基于激光雷达和单目相机的时空制导自监督深度完成

Z. Chen, Hantao Wang, Lijun Wu, Yanlin Zhou, Dapeng Oliver Wu
{"title":"基于激光雷达和单目相机的时空制导自监督深度完成","authors":"Z. Chen, Hantao Wang, Lijun Wu, Yanlin Zhou, Dapeng Oliver Wu","doi":"10.1109/VCIP49819.2020.9301857","DOIUrl":null,"url":null,"abstract":"Depth completion aims to estimate dense depth maps from sparse depth measurements. It has become increasingly important in autonomous driving and thus has drawn wide attention. In this paper, we introduce photometric losses in both spatial and time domains to jointly guide self-supervised depth completion. This method performs an accurate end-to-end depth completion of vision tasks by using LiDAR and a monocular camera. In particular, we full utilize the consistent information inside the temporally adjacent frames and the stereo vision to improve the accuracy of depth completion in the model training phase. We design a self-supervised framework to eliminate the negative effects of moving objects and the region with smooth gradients. Experiments are conducted on KITTI. Results indicate that our self-supervised method can attain competitive performance.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spatiotemporal Guided Self-Supervised Depth Completion from LiDAR and Monocular Camera\",\"authors\":\"Z. Chen, Hantao Wang, Lijun Wu, Yanlin Zhou, Dapeng Oliver Wu\",\"doi\":\"10.1109/VCIP49819.2020.9301857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth completion aims to estimate dense depth maps from sparse depth measurements. It has become increasingly important in autonomous driving and thus has drawn wide attention. In this paper, we introduce photometric losses in both spatial and time domains to jointly guide self-supervised depth completion. This method performs an accurate end-to-end depth completion of vision tasks by using LiDAR and a monocular camera. In particular, we full utilize the consistent information inside the temporally adjacent frames and the stereo vision to improve the accuracy of depth completion in the model training phase. We design a self-supervised framework to eliminate the negative effects of moving objects and the region with smooth gradients. Experiments are conducted on KITTI. Results indicate that our self-supervised method can attain competitive performance.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

深度补全的目的是从稀疏的深度测量中估计密集的深度图。它在自动驾驶中变得越来越重要,因此引起了广泛的关注。在本文中,我们引入了空间和时间域的光度损失来共同指导自监督深度完成。该方法利用激光雷达和单目摄像机对视觉任务进行精确的端到端深度完成。特别是在模型训练阶段,我们充分利用时间相邻帧内的一致性信息和立体视觉来提高深度补全的精度。我们设计了一个自监督框架来消除运动物体和平滑梯度区域的负面影响。在KITTI上进行了实验。结果表明,本文提出的自监督方法能够取得较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatiotemporal Guided Self-Supervised Depth Completion from LiDAR and Monocular Camera
Depth completion aims to estimate dense depth maps from sparse depth measurements. It has become increasingly important in autonomous driving and thus has drawn wide attention. In this paper, we introduce photometric losses in both spatial and time domains to jointly guide self-supervised depth completion. This method performs an accurate end-to-end depth completion of vision tasks by using LiDAR and a monocular camera. In particular, we full utilize the consistent information inside the temporally adjacent frames and the stereo vision to improve the accuracy of depth completion in the model training phase. We design a self-supervised framework to eliminate the negative effects of moving objects and the region with smooth gradients. Experiments are conducted on KITTI. Results indicate that our self-supervised method can attain competitive performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Mixed Appearance-based and Coding Distortion-based CNN Fusion Approach for In-loop Filtering in Video Coding APL: Adaptive Preloading of Short Video with Lyapunov Optimization A Novel Visual Analysis Oriented Rate Control Scheme for HEVC A Theory of Occlusion for Improving Rendering Quality of Views A Progressive Fast CU Split Decision Scheme for AVS3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1