连接照明系统的嵌入式传感器数据压缩框架:海报

Arvind Ramesh, Olaitan Olaleye, A. Murthy
{"title":"连接照明系统的嵌入式传感器数据压缩框架:海报","authors":"Arvind Ramesh, Olaitan Olaleye, A. Murthy","doi":"10.1145/3132211.3132212","DOIUrl":null,"url":null,"abstract":"We present compression algorithms for analog responses of Passive Infra-Red (PIR) sensors and a corresponding benchmarking framework based on ARM Cortex-M4 micro-controller. Compression ratio, reconstruction accuracy, memory footprint, and running times for a compression algorithm based on Discrete Cosine Transform (DCT) are presented. Analog responses can be compressed by up to 90% and recovered with less than 10% error. Our framework presents a first step in overcoming the computational limitations of the edge nodes in connected lighting systems to collect fine-grained occupancy patterns and enable beyond-lighting applications, such as Space Optimization and Heating Ventilation and Air Conditioning (HVAC) controls.","PeriodicalId":389022,"journal":{"name":"Proceedings of the Second ACM/IEEE Symposium on Edge Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedded sensor-data compression frameworks for connected lighting systems: poster\",\"authors\":\"Arvind Ramesh, Olaitan Olaleye, A. Murthy\",\"doi\":\"10.1145/3132211.3132212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present compression algorithms for analog responses of Passive Infra-Red (PIR) sensors and a corresponding benchmarking framework based on ARM Cortex-M4 micro-controller. Compression ratio, reconstruction accuracy, memory footprint, and running times for a compression algorithm based on Discrete Cosine Transform (DCT) are presented. Analog responses can be compressed by up to 90% and recovered with less than 10% error. Our framework presents a first step in overcoming the computational limitations of the edge nodes in connected lighting systems to collect fine-grained occupancy patterns and enable beyond-lighting applications, such as Space Optimization and Heating Ventilation and Air Conditioning (HVAC) controls.\",\"PeriodicalId\":389022,\"journal\":{\"name\":\"Proceedings of the Second ACM/IEEE Symposium on Edge Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second ACM/IEEE Symposium on Edge Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132211.3132212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second ACM/IEEE Symposium on Edge Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132211.3132212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了被动红外(PIR)传感器模拟响应的压缩算法和基于ARM Cortex-M4微控制器的相应基准测试框架。给出了一种基于离散余弦变换(DCT)的压缩算法的压缩比、重构精度、内存占用和运行时间。模拟响应可以压缩高达90%,并以小于10%的误差恢复。我们的框架在克服连接照明系统中边缘节点的计算限制方面迈出了第一步,以收集细粒度的占用模式,并实现照明以外的应用,如空间优化和采暖通风和空调(HVAC)控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Embedded sensor-data compression frameworks for connected lighting systems: poster
We present compression algorithms for analog responses of Passive Infra-Red (PIR) sensors and a corresponding benchmarking framework based on ARM Cortex-M4 micro-controller. Compression ratio, reconstruction accuracy, memory footprint, and running times for a compression algorithm based on Discrete Cosine Transform (DCT) are presented. Analog responses can be compressed by up to 90% and recovered with less than 10% error. Our framework presents a first step in overcoming the computational limitations of the edge nodes in connected lighting systems to collect fine-grained occupancy patterns and enable beyond-lighting applications, such as Space Optimization and Heating Ventilation and Air Conditioning (HVAC) controls.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High speed object tracking using edge computing: poster abstract Parkmaster: an in-vehicle, edge-based video analytics service for detecting open parking spaces in urban environments PredriveID: pre-trip driver identification from in-vehicle data Privacy-preserving of platoon-based V2V in collaborative edge: poster abstract Fast and accurate object analysis at the edge for mobile augmented reality: demo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1