CS-MUVI:用于空间复用摄像机的视频压缩感知

Aswin C. Sankaranarayanan, Christoph Studer, Richard Baraniuk
{"title":"CS-MUVI:用于空间复用摄像机的视频压缩感知","authors":"Aswin C. Sankaranarayanan, Christoph Studer, Richard Baraniuk","doi":"10.1109/ICCPhot.2012.6215212","DOIUrl":null,"url":null,"abstract":"Compressive sensing (CS)-based spatial-multiplexing cameras (SMCs) sample a scene through a series of coded projections using a spatial light modulator and a few optical sensor elements. SMC architectures are particularly useful when imaging at wavelengths for which full-frame sensors are too cumbersome or expensive. While existing recovery algorithms for SMCs perform well for static images, they typically fail for time-varying scenes (videos). In this paper, we propose a novel CS multi-scale video (CS-MUVI) sensing and recovery framework for SMCs. Our framework features a co-designed video CS sensing matrix and recovery algorithm that provide an efficiently computable low-resolution video preview. We estimate the scene's optical flow from the video preview and feed it into a convex-optimization algorithm to recover the high-resolution video. We demonstrate the performance and capabilities of the CS-MUVI framework for different scenes.","PeriodicalId":169984,"journal":{"name":"2012 IEEE International Conference on Computational Photography (ICCP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"151","resultStr":"{\"title\":\"CS-MUVI: Video compressive sensing for spatial-multiplexing cameras\",\"authors\":\"Aswin C. Sankaranarayanan, Christoph Studer, Richard Baraniuk\",\"doi\":\"10.1109/ICCPhot.2012.6215212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive sensing (CS)-based spatial-multiplexing cameras (SMCs) sample a scene through a series of coded projections using a spatial light modulator and a few optical sensor elements. SMC architectures are particularly useful when imaging at wavelengths for which full-frame sensors are too cumbersome or expensive. While existing recovery algorithms for SMCs perform well for static images, they typically fail for time-varying scenes (videos). In this paper, we propose a novel CS multi-scale video (CS-MUVI) sensing and recovery framework for SMCs. Our framework features a co-designed video CS sensing matrix and recovery algorithm that provide an efficiently computable low-resolution video preview. We estimate the scene's optical flow from the video preview and feed it into a convex-optimization algorithm to recover the high-resolution video. We demonstrate the performance and capabilities of the CS-MUVI framework for different scenes.\",\"PeriodicalId\":169984,\"journal\":{\"name\":\"2012 IEEE International Conference on Computational Photography (ICCP)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"151\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Computational Photography (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPhot.2012.6215212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPhot.2012.6215212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 151

摘要

基于压缩感知(CS)的空间多路复用相机(SMCs)使用空间光调制器和一些光学传感器元件通过一系列编码投影对场景进行采样。SMC架构在全画幅传感器过于笨重或昂贵的波长下成像时特别有用。虽然现有的smc恢复算法对静态图像表现良好,但对于时变场景(视频),它们通常会失败。在本文中,我们提出了一种新的CS多尺度视频(CS- muvi)感知和恢复框架。我们的框架具有共同设计的视频CS传感矩阵和恢复算法,可提供高效可计算的低分辨率视频预览。我们从视频预览中估计场景的光流,并将其输入到凸优化算法中以恢复高分辨率视频。我们演示了CS-MUVI框架在不同场景下的性能和功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CS-MUVI: Video compressive sensing for spatial-multiplexing cameras
Compressive sensing (CS)-based spatial-multiplexing cameras (SMCs) sample a scene through a series of coded projections using a spatial light modulator and a few optical sensor elements. SMC architectures are particularly useful when imaging at wavelengths for which full-frame sensors are too cumbersome or expensive. While existing recovery algorithms for SMCs perform well for static images, they typically fail for time-varying scenes (videos). In this paper, we propose a novel CS multi-scale video (CS-MUVI) sensing and recovery framework for SMCs. Our framework features a co-designed video CS sensing matrix and recovery algorithm that provide an efficiently computable low-resolution video preview. We estimate the scene's optical flow from the video preview and feed it into a convex-optimization algorithm to recover the high-resolution video. We demonstrate the performance and capabilities of the CS-MUVI framework for different scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrast preserving decolorization Fast reactive control for illumination through rain and snow Diffuse structured light CS-MUVI: Video compressive sensing for spatial-multiplexing cameras Calibration-free rolling shutter removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1