{"title":"长期进化系统中的隐写术","authors":"Iwona Grabska, K. Szczypiorski","doi":"10.1109/SPW.2014.23","DOIUrl":null,"url":null,"abstract":"This paper contains a description and analysis of a new steganographic method, called LaTEsteg, designed for LTE (Long Term Evolution) systems. The LaTEsteg uses physical layer padding of packets sent over LTE networks. This method allows users to gain additional data transfer that is invisible to unauthorized parties that are unaware of hidden communication. Three important parameters of the LaTESteg are defined and evaluated: performance, cost and security.","PeriodicalId":142224,"journal":{"name":"2014 IEEE Security and Privacy Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Steganography in Long Term Evolution Systems\",\"authors\":\"Iwona Grabska, K. Szczypiorski\",\"doi\":\"10.1109/SPW.2014.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper contains a description and analysis of a new steganographic method, called LaTEsteg, designed for LTE (Long Term Evolution) systems. The LaTEsteg uses physical layer padding of packets sent over LTE networks. This method allows users to gain additional data transfer that is invisible to unauthorized parties that are unaware of hidden communication. Three important parameters of the LaTESteg are defined and evaluated: performance, cost and security.\",\"PeriodicalId\":142224,\"journal\":{\"name\":\"2014 IEEE Security and Privacy Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Security and Privacy Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPW.2014.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Security and Privacy Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2014.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper contains a description and analysis of a new steganographic method, called LaTEsteg, designed for LTE (Long Term Evolution) systems. The LaTEsteg uses physical layer padding of packets sent over LTE networks. This method allows users to gain additional data transfer that is invisible to unauthorized parties that are unaware of hidden communication. Three important parameters of the LaTESteg are defined and evaluated: performance, cost and security.