在巡逻-入侵游戏中获取增强传感能力和入侵延迟

Nicola Basilico, N. Gatti, Thomas Rossi
{"title":"在巡逻-入侵游戏中获取增强传感能力和入侵延迟","authors":"Nicola Basilico, N. Gatti, Thomas Rossi","doi":"10.1109/CIG.2009.5286477","DOIUrl":null,"url":null,"abstract":"Patrolling-intrusion games are recently receiving more and more attention in the literature. They are twoplayer non zero-sum games where an intruder tries to attack one place of interest and one patroller (or more) tries to capture the intruder. The patroller cannot completely cover the environment following a cycle, otherwise the intruder will successfully strike at least a target. Thus, the patroller employs a randomized strategy. These games are usually studied as leader-follower games, where the patroller is the leader and the intruder is the follower. The models proposed in the state of the art so far present several limitations that prevent their employment in realistic settings. In this paper, we refine the models from the state-of-the-art capturing patroller's augmented sensing capabilities and a possible delay in the intrusion, we propose algorithms to solve efficiently our extensions, and we experimentally evaluate the computational time in some case studies.","PeriodicalId":358795,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence and Games","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Capturing augmented sensing capabilities and intrusion delay in patrolling-intrusion games\",\"authors\":\"Nicola Basilico, N. Gatti, Thomas Rossi\",\"doi\":\"10.1109/CIG.2009.5286477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patrolling-intrusion games are recently receiving more and more attention in the literature. They are twoplayer non zero-sum games where an intruder tries to attack one place of interest and one patroller (or more) tries to capture the intruder. The patroller cannot completely cover the environment following a cycle, otherwise the intruder will successfully strike at least a target. Thus, the patroller employs a randomized strategy. These games are usually studied as leader-follower games, where the patroller is the leader and the intruder is the follower. The models proposed in the state of the art so far present several limitations that prevent their employment in realistic settings. In this paper, we refine the models from the state-of-the-art capturing patroller's augmented sensing capabilities and a possible delay in the intrusion, we propose algorithms to solve efficiently our extensions, and we experimentally evaluate the computational time in some case studies.\",\"PeriodicalId\":358795,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2009.5286477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2009.5286477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

近年来,巡逻入侵游戏受到了越来越多的关注。它们是两方非零和游戏,入侵者试图攻击一个感兴趣的地方,一个巡逻人员(或更多)试图捕获入侵者。巡逻队不能在一个周期内完全覆盖周围环境,否则入侵者至少会成功袭击一个目标。因此,巡警采用随机策略。这些博弈通常被研究为领导者-追随者博弈,其中巡逻者是领导者,入侵者是追随者。到目前为止,在最先进的技术中提出的模型存在一些限制,阻碍了它们在现实环境中的应用。在本文中,我们从最先进的捕获巡逻员的增强传感能力和入侵的可能延迟来改进模型,我们提出了有效解决我们扩展的算法,并在一些案例研究中实验评估了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Capturing augmented sensing capabilities and intrusion delay in patrolling-intrusion games
Patrolling-intrusion games are recently receiving more and more attention in the literature. They are twoplayer non zero-sum games where an intruder tries to attack one place of interest and one patroller (or more) tries to capture the intruder. The patroller cannot completely cover the environment following a cycle, otherwise the intruder will successfully strike at least a target. Thus, the patroller employs a randomized strategy. These games are usually studied as leader-follower games, where the patroller is the leader and the intruder is the follower. The models proposed in the state of the art so far present several limitations that prevent their employment in realistic settings. In this paper, we refine the models from the state-of-the-art capturing patroller's augmented sensing capabilities and a possible delay in the intrusion, we propose algorithms to solve efficiently our extensions, and we experimentally evaluate the computational time in some case studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal strategy selection of non-player character on real time strategy game using a speciated evolutionary algorithm Formal analysis and algorithms for extracting coordinate systems of games Evolving driving controllers using Genetic Programming CHANCEPROBCUT: Forward pruning in chance nodes Evolving coordinated spatial tactics for autonomous entities using influence maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1