物理学入门题评分标准的信度与效度

Kristen Rodenhausen, J. C. Moore
{"title":"物理学入门题评分标准的信度与效度","authors":"Kristen Rodenhausen, J. C. Moore","doi":"10.1119/perc.2022.pr.rodenhausen","DOIUrl":null,"url":null,"abstract":"We have developed and validated a rubric for the assessment and scaffolding of problem-solving process in introductory physics courses via an iterative approach. The current version of the rubric consists of eight criteria based on research in expert-like problem solving practice and aspects of Cooperative Group Problem Solving (CGPS) pedagogy. In contrast to recent work on problem-solving assessment for use in research and curriculum development, this rubric was specifically designed for instructor use in the assignment of grades and for student use as a scaffold. This means that the rubric can be used within group problem-solving activities as a student support, formative assessment of individual work, and summative assessment, such as exams. For this study, the rubric was used to score N = 166 student solutions to 6 individually-assigned homework problems covering content in introductory mechanics in a course enrolling 32 students. Inter-rater and re-rater reliability was high for undergraduate Learning Assistant raters receiving only moderate training (approximately 4 hours). Factor analysis identified two factors that have been categorized as: (1) framing & defining, and (2) planning & execution. These factors align with our initial theory of the construct, suggesting evidence for criterion-related validity. Tau-equivalent reliability was found to be 0.76, and an item-total correlations test demonstrated all criteria correlations consistent with averaged behavior.","PeriodicalId":253382,"journal":{"name":"2022 Physics Education Research Conference Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability and Validity of an Introductory Physics Problem-Solving Grading Rubric\",\"authors\":\"Kristen Rodenhausen, J. C. Moore\",\"doi\":\"10.1119/perc.2022.pr.rodenhausen\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed and validated a rubric for the assessment and scaffolding of problem-solving process in introductory physics courses via an iterative approach. The current version of the rubric consists of eight criteria based on research in expert-like problem solving practice and aspects of Cooperative Group Problem Solving (CGPS) pedagogy. In contrast to recent work on problem-solving assessment for use in research and curriculum development, this rubric was specifically designed for instructor use in the assignment of grades and for student use as a scaffold. This means that the rubric can be used within group problem-solving activities as a student support, formative assessment of individual work, and summative assessment, such as exams. For this study, the rubric was used to score N = 166 student solutions to 6 individually-assigned homework problems covering content in introductory mechanics in a course enrolling 32 students. Inter-rater and re-rater reliability was high for undergraduate Learning Assistant raters receiving only moderate training (approximately 4 hours). Factor analysis identified two factors that have been categorized as: (1) framing & defining, and (2) planning & execution. These factors align with our initial theory of the construct, suggesting evidence for criterion-related validity. Tau-equivalent reliability was found to be 0.76, and an item-total correlations test demonstrated all criteria correlations consistent with averaged behavior.\",\"PeriodicalId\":253382,\"journal\":{\"name\":\"2022 Physics Education Research Conference Proceedings\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Physics Education Research Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1119/perc.2022.pr.rodenhausen\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Physics Education Research Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1119/perc.2022.pr.rodenhausen","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过迭代的方法,我们开发并验证了物理入门课程中问题解决过程的评估和框架。当前版本的标准包括八个标准,这些标准基于对专家型问题解决实践和合作小组问题解决(CGPS)教学法方面的研究。与最近在研究和课程开发中使用的问题解决评估工作相反,该标准是专门为教师在分配成绩时使用而设计的,并供学生用作脚手架。这意味着该标题可以在小组问题解决活动中用作学生支持、个人作业的形成性评估和总结性评估(如考试)。在这项研究中,在一门招收32名学生的课程中,对6个单独布置的家庭作业问题,包括介绍力学的内容,使用评分标准对N = 166名学生的解决方案进行评分。仅接受中等训练(约4小时)的本科学习助理评分者的内部和再评分者信度较高。因子分析确定了两个被分类的因素:(1)框架和定义,(2)计划和执行。这些因素与我们最初的构造理论一致,为标准相关的有效性提供了证据。tau等效信度为0.76,项目总数相关性检验表明所有标准相关性与平均行为一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reliability and Validity of an Introductory Physics Problem-Solving Grading Rubric
We have developed and validated a rubric for the assessment and scaffolding of problem-solving process in introductory physics courses via an iterative approach. The current version of the rubric consists of eight criteria based on research in expert-like problem solving practice and aspects of Cooperative Group Problem Solving (CGPS) pedagogy. In contrast to recent work on problem-solving assessment for use in research and curriculum development, this rubric was specifically designed for instructor use in the assignment of grades and for student use as a scaffold. This means that the rubric can be used within group problem-solving activities as a student support, formative assessment of individual work, and summative assessment, such as exams. For this study, the rubric was used to score N = 166 student solutions to 6 individually-assigned homework problems covering content in introductory mechanics in a course enrolling 32 students. Inter-rater and re-rater reliability was high for undergraduate Learning Assistant raters receiving only moderate training (approximately 4 hours). Factor analysis identified two factors that have been categorized as: (1) framing & defining, and (2) planning & execution. These factors align with our initial theory of the construct, suggesting evidence for criterion-related validity. Tau-equivalent reliability was found to be 0.76, and an item-total correlations test demonstrated all criteria correlations consistent with averaged behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing disabled physics students' pathways to access: a call for more access talk Analyzing Multiple-Choice-Multiple-Response Items Using Item Response Theory Methods for utilizing Item response theory with Coupled, Multiple-Response assessments Impact of mathematical reasoning on students� understanding of quantum optics Leveraging queer epistemic subjectivity to advance justice through physics teaching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1