{"title":"基于协方差域连续群稀疏度的超分辨DOA估计","authors":"Cheng-Yu Hung, M. Kaveh","doi":"10.1109/ICASSP.2016.7472239","DOIUrl":null,"url":null,"abstract":"Estimation of directions-of-arrival (DoA) in the spatial co-variance model is studied. Unlike the compressed sensing methods which discretize the search domain into possible directions on a grid, the theory of super resolution is applied to estimate DoAs in the continuous domain. We reformulate the spatial spectral covariance model into a Multiple Measurement Vector (MMV)-like model, and propose a block total variation norm minimization approach, which is the analog of Group Lasso in the super-resolution framework and that promotes the group-sparsity. The DoAs can be estimated by solving its dual problem via semidefinite programming. This gridless recovery approach is verified by simulation results for both uncorrelated and correlated source signals.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Super-resolution DOA estimation via continuous group sparsity in the covariance domain\",\"authors\":\"Cheng-Yu Hung, M. Kaveh\",\"doi\":\"10.1109/ICASSP.2016.7472239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of directions-of-arrival (DoA) in the spatial co-variance model is studied. Unlike the compressed sensing methods which discretize the search domain into possible directions on a grid, the theory of super resolution is applied to estimate DoAs in the continuous domain. We reformulate the spatial spectral covariance model into a Multiple Measurement Vector (MMV)-like model, and propose a block total variation norm minimization approach, which is the analog of Group Lasso in the super-resolution framework and that promotes the group-sparsity. The DoAs can be estimated by solving its dual problem via semidefinite programming. This gridless recovery approach is verified by simulation results for both uncorrelated and correlated source signals.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Super-resolution DOA estimation via continuous group sparsity in the covariance domain
Estimation of directions-of-arrival (DoA) in the spatial co-variance model is studied. Unlike the compressed sensing methods which discretize the search domain into possible directions on a grid, the theory of super resolution is applied to estimate DoAs in the continuous domain. We reformulate the spatial spectral covariance model into a Multiple Measurement Vector (MMV)-like model, and propose a block total variation norm minimization approach, which is the analog of Group Lasso in the super-resolution framework and that promotes the group-sparsity. The DoAs can be estimated by solving its dual problem via semidefinite programming. This gridless recovery approach is verified by simulation results for both uncorrelated and correlated source signals.