{"title":"一种动态定性概率网络方法提取基因调控网络基序","authors":"Zina M. Ibrahim, A. Ngom, Ahmed Y. Tawfik","doi":"10.1109/BIBM.2010.5706595","DOIUrl":null,"url":null,"abstract":"This paper extends our work to using qualitative probability to model the naturally-occurring motifs of gene regulatory networks. Having showed in [16] that the qualitative relations defining QPN graphs exhibit a direct mapping to the naturally-occurring network motifs embedded in Gene Regulatory Networks, this work is concerned with generalizing QPN constructs to create a high-level framework from which any regulatory network motif can be derived. Experimental results using time-series data of the Saccha-romyces Cerevisiae show the effectiveness of our approach in providing a more accurate description of the regulatory motifs in the Saccharomyces Cerevisiae gene regulatory network compared to our previous definitions.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A dynamic qualitative probabilistic network approach for extracting gene regulatory network motifs\",\"authors\":\"Zina M. Ibrahim, A. Ngom, Ahmed Y. Tawfik\",\"doi\":\"10.1109/BIBM.2010.5706595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper extends our work to using qualitative probability to model the naturally-occurring motifs of gene regulatory networks. Having showed in [16] that the qualitative relations defining QPN graphs exhibit a direct mapping to the naturally-occurring network motifs embedded in Gene Regulatory Networks, this work is concerned with generalizing QPN constructs to create a high-level framework from which any regulatory network motif can be derived. Experimental results using time-series data of the Saccha-romyces Cerevisiae show the effectiveness of our approach in providing a more accurate description of the regulatory motifs in the Saccharomyces Cerevisiae gene regulatory network compared to our previous definitions.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A dynamic qualitative probabilistic network approach for extracting gene regulatory network motifs
This paper extends our work to using qualitative probability to model the naturally-occurring motifs of gene regulatory networks. Having showed in [16] that the qualitative relations defining QPN graphs exhibit a direct mapping to the naturally-occurring network motifs embedded in Gene Regulatory Networks, this work is concerned with generalizing QPN constructs to create a high-level framework from which any regulatory network motif can be derived. Experimental results using time-series data of the Saccha-romyces Cerevisiae show the effectiveness of our approach in providing a more accurate description of the regulatory motifs in the Saccharomyces Cerevisiae gene regulatory network compared to our previous definitions.