一种动态定性概率网络方法提取基因调控网络基序

Zina M. Ibrahim, A. Ngom, Ahmed Y. Tawfik
{"title":"一种动态定性概率网络方法提取基因调控网络基序","authors":"Zina M. Ibrahim, A. Ngom, Ahmed Y. Tawfik","doi":"10.1109/BIBM.2010.5706595","DOIUrl":null,"url":null,"abstract":"This paper extends our work to using qualitative probability to model the naturally-occurring motifs of gene regulatory networks. Having showed in [16] that the qualitative relations defining QPN graphs exhibit a direct mapping to the naturally-occurring network motifs embedded in Gene Regulatory Networks, this work is concerned with generalizing QPN constructs to create a high-level framework from which any regulatory network motif can be derived. Experimental results using time-series data of the Saccha-romyces Cerevisiae show the effectiveness of our approach in providing a more accurate description of the regulatory motifs in the Saccharomyces Cerevisiae gene regulatory network compared to our previous definitions.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A dynamic qualitative probabilistic network approach for extracting gene regulatory network motifs\",\"authors\":\"Zina M. Ibrahim, A. Ngom, Ahmed Y. Tawfik\",\"doi\":\"10.1109/BIBM.2010.5706595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper extends our work to using qualitative probability to model the naturally-occurring motifs of gene regulatory networks. Having showed in [16] that the qualitative relations defining QPN graphs exhibit a direct mapping to the naturally-occurring network motifs embedded in Gene Regulatory Networks, this work is concerned with generalizing QPN constructs to create a high-level framework from which any regulatory network motif can be derived. Experimental results using time-series data of the Saccha-romyces Cerevisiae show the effectiveness of our approach in providing a more accurate description of the regulatory motifs in the Saccharomyces Cerevisiae gene regulatory network compared to our previous definitions.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将我们的工作扩展到使用定性概率来模拟基因调控网络的自然发生的基序。在[16]中表明,定义QPN图的定性关系直接映射到嵌入在基因调控网络中的自然发生的网络基序,这项工作涉及推广QPN结构,以创建一个高级框架,从中可以推导出任何调控网络基序。使用酿酒酵母时间序列数据的实验结果表明,与之前的定义相比,我们的方法在提供更准确描述酿酒酵母基因调控网络中的调控基序方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A dynamic qualitative probabilistic network approach for extracting gene regulatory network motifs
This paper extends our work to using qualitative probability to model the naturally-occurring motifs of gene regulatory networks. Having showed in [16] that the qualitative relations defining QPN graphs exhibit a direct mapping to the naturally-occurring network motifs embedded in Gene Regulatory Networks, this work is concerned with generalizing QPN constructs to create a high-level framework from which any regulatory network motif can be derived. Experimental results using time-series data of the Saccha-romyces Cerevisiae show the effectiveness of our approach in providing a more accurate description of the regulatory motifs in the Saccharomyces Cerevisiae gene regulatory network compared to our previous definitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1