氢端金刚石场效应管和GaN HEMT提供CMOS逆变器在高温下工作

Chenhao Ren, M. Malakoutian, Siwei Li, S. Chowdhury
{"title":"氢端金刚石场效应管和GaN HEMT提供CMOS逆变器在高温下工作","authors":"Chenhao Ren, M. Malakoutian, Siwei Li, S. Chowdhury","doi":"10.1109/DRC50226.2020.9135152","DOIUrl":null,"url":null,"abstract":"An increasing number of applications in power electronics, sensor signal conditioning, and RF communication are demanded to operate beyond 200°C (e.g., engine and geothermal wellbore monitoring). These applications require integrated circuits such as mixed-signal circuits featuring analog circuitry, analog to digital converters as well as embedded microcontrollers and on-chip memories. The Si-based complementary metal-oxide-semiconductor (CMOS) technology combining a P-type MOS (PMOS) and N-type MOS (NMOS) to achieve different logic functions is not reliable for stable and sustained operations at high temperatures (>125 °C) [1] . In this work, we report the successful development of a CMOS building block using wide bandgap (WBG) technology that demonstrated operations up to >350 °C. The CMOS was developed using two wide bandgap material systems known for their high-temperature capability: diamond and gallium nitride (GaN). The \"PMOS\" utilizes a hole channel FET achieved using a hydrogen-terminated diamond field-effect transistor (diamond FET) and the \"NMOS\" is made out of an electron channel GaN high electron mobility transistor (GaN HEMT) as shown in Figure 1 .","PeriodicalId":397182,"journal":{"name":"2020 Device Research Conference (DRC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hydrogen-terminated diamond FET and GaN HEMT delivering CMOS inverter operation at high-temperature\",\"authors\":\"Chenhao Ren, M. Malakoutian, Siwei Li, S. Chowdhury\",\"doi\":\"10.1109/DRC50226.2020.9135152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An increasing number of applications in power electronics, sensor signal conditioning, and RF communication are demanded to operate beyond 200°C (e.g., engine and geothermal wellbore monitoring). These applications require integrated circuits such as mixed-signal circuits featuring analog circuitry, analog to digital converters as well as embedded microcontrollers and on-chip memories. The Si-based complementary metal-oxide-semiconductor (CMOS) technology combining a P-type MOS (PMOS) and N-type MOS (NMOS) to achieve different logic functions is not reliable for stable and sustained operations at high temperatures (>125 °C) [1] . In this work, we report the successful development of a CMOS building block using wide bandgap (WBG) technology that demonstrated operations up to >350 °C. The CMOS was developed using two wide bandgap material systems known for their high-temperature capability: diamond and gallium nitride (GaN). The \\\"PMOS\\\" utilizes a hole channel FET achieved using a hydrogen-terminated diamond field-effect transistor (diamond FET) and the \\\"NMOS\\\" is made out of an electron channel GaN high electron mobility transistor (GaN HEMT) as shown in Figure 1 .\",\"PeriodicalId\":397182,\"journal\":{\"name\":\"2020 Device Research Conference (DRC)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Device Research Conference (DRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC50226.2020.9135152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC50226.2020.9135152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

越来越多的电力电子、传感器信号调节和射频通信应用需要在200°C以上工作(例如,发动机和地热井筒监测)。这些应用需要集成电路,如具有模拟电路的混合信号电路,模数转换器以及嵌入式微控制器和片上存储器。结合p型MOS (PMOS)和n型MOS (NMOS)实现不同逻辑功能的si基互补金属氧化物半导体(CMOS)技术在高温(>125°C)下的稳定和持续运行并不可靠[1]。在这项工作中,我们报告了使用宽带隙(WBG)技术成功开发的CMOS构建块,其操作温度可达>350°C。该CMOS采用了两种具有高温性能的宽带隙材料系统:金刚石和氮化镓(GaN)。如图1所示,“PMOS”利用了一个空穴沟道场效应管(FET)实现,而“NMOS”由一个电子沟道GaN高电子迁移率晶体管(HEMT)制成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrogen-terminated diamond FET and GaN HEMT delivering CMOS inverter operation at high-temperature
An increasing number of applications in power electronics, sensor signal conditioning, and RF communication are demanded to operate beyond 200°C (e.g., engine and geothermal wellbore monitoring). These applications require integrated circuits such as mixed-signal circuits featuring analog circuitry, analog to digital converters as well as embedded microcontrollers and on-chip memories. The Si-based complementary metal-oxide-semiconductor (CMOS) technology combining a P-type MOS (PMOS) and N-type MOS (NMOS) to achieve different logic functions is not reliable for stable and sustained operations at high temperatures (>125 °C) [1] . In this work, we report the successful development of a CMOS building block using wide bandgap (WBG) technology that demonstrated operations up to >350 °C. The CMOS was developed using two wide bandgap material systems known for their high-temperature capability: diamond and gallium nitride (GaN). The "PMOS" utilizes a hole channel FET achieved using a hydrogen-terminated diamond field-effect transistor (diamond FET) and the "NMOS" is made out of an electron channel GaN high electron mobility transistor (GaN HEMT) as shown in Figure 1 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Millimeter-Wave GaN Device Modeling for Power Amplifiers Reliability of Ferroelectric HfO2-based Memories: From MOS Capacitor to FeFET Linearity by Synthesis: An Intrinsically Linear AlGaN/GaN-on-Si Transistor with OIP3/(F-1)PDC of 10.1 at 30 GHz Stopping Resistance Drift in Phase Change Memory Cells Modeling Multi-states in Ferroelectric Tunnel Junction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1