地缘政治风险事件的时间点语言模型

Matthias Apel, A. Betzer, B. Scherer
{"title":"地缘政治风险事件的时间点语言模型","authors":"Matthias Apel, A. Betzer, B. Scherer","doi":"10.3905/jfds.2022.1.113","DOIUrl":null,"url":null,"abstract":"In this article, the authors show how to build a real-time geopolitical risk index from news data using textual analysis. The presented method defines a point-in-time dictionary of terms related to political tension. It does not rely on the in-sample definition of a set of n-grams that are likely chosen and updated with hindsight bias. The proposed model can be applied to any topic and is language agnostic. Only a few topic-related words are required to initialize the buildup of a dynamically self-adjusting dictionary. The authors show that their approach can resemble the results of other more supervised methods. The findings indicate how topic identification and news index construction may benefit from a time-dependent dictionary generation.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"71 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point-in-Time Language Model for Geopolitical Risk Events\",\"authors\":\"Matthias Apel, A. Betzer, B. Scherer\",\"doi\":\"10.3905/jfds.2022.1.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the authors show how to build a real-time geopolitical risk index from news data using textual analysis. The presented method defines a point-in-time dictionary of terms related to political tension. It does not rely on the in-sample definition of a set of n-grams that are likely chosen and updated with hindsight bias. The proposed model can be applied to any topic and is language agnostic. Only a few topic-related words are required to initialize the buildup of a dynamically self-adjusting dictionary. The authors show that their approach can resemble the results of other more supervised methods. The findings indicate how topic identification and news index construction may benefit from a time-dependent dictionary generation.\",\"PeriodicalId\":199045,\"journal\":{\"name\":\"The Journal of Financial Data Science\",\"volume\":\"71 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Financial Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3905/jfds.2022.1.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jfds.2022.1.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,作者展示了如何利用文本分析从新闻数据中构建实时地缘政治风险指数。所提出的方法定义了与政治紧张相关的术语的时间点词典。它不依赖于一组n个图的样本内定义,这些图很可能是用后见之明的偏见选择和更新的。该模型可以应用于任何主题,并且是语言不可知论的。初始化动态自调整字典的构建只需要几个与主题相关的词。作者表明,他们的方法可以类似于其他更有监督的方法的结果。研究结果表明,主题识别和新闻索引构建可能受益于时间依赖的词典生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Point-in-Time Language Model for Geopolitical Risk Events
In this article, the authors show how to build a real-time geopolitical risk index from news data using textual analysis. The presented method defines a point-in-time dictionary of terms related to political tension. It does not rely on the in-sample definition of a set of n-grams that are likely chosen and updated with hindsight bias. The proposed model can be applied to any topic and is language agnostic. Only a few topic-related words are required to initialize the buildup of a dynamically self-adjusting dictionary. The authors show that their approach can resemble the results of other more supervised methods. The findings indicate how topic identification and news index construction may benefit from a time-dependent dictionary generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Managing Editor’s Letter Explainable Machine Learning Models of Consumer Credit Risk Predicting Returns with Machine Learning across Horizons, Firm Size, and Time Deep Calibration with Artificial Neural Network: A Performance Comparison on Option-Pricing Models RIFT: Pretraining and Applications for Representations of Interrelated Financial Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1