基于OB-MMR的多视频摘要

Yingbo Li, B. Mérialdo
{"title":"基于OB-MMR的多视频摘要","authors":"Yingbo Li, B. Mérialdo","doi":"10.1109/CBMI.2011.5972539","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel algorithm for video summarization, OB-MMR (Optimized Balanced Audio Video Maximal Marginal Relevance). This algorithm is suitable to summarize both single and multiple videos. OB-MMR is achieved by optimizing the parameters in Balanced AV-MMR (Balanced Audio Video Maximal Marginal Relevance), namely the balance factor between audio information and visual information in the video, but also the importance of face and audio transitions among audio segments with different genres. Therefore, OB-MMR achieves a better result than previous algorithms, Video-MMR and Balanced AV-MMR. Furthermore, it is possible to select the optimized parameters for each genre of videos, which leads to promising automatic algorithms for video summarization in the future large-scale experiments.","PeriodicalId":358337,"journal":{"name":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Multi-video summarization based on OB-MMR\",\"authors\":\"Yingbo Li, B. Mérialdo\",\"doi\":\"10.1109/CBMI.2011.5972539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a novel algorithm for video summarization, OB-MMR (Optimized Balanced Audio Video Maximal Marginal Relevance). This algorithm is suitable to summarize both single and multiple videos. OB-MMR is achieved by optimizing the parameters in Balanced AV-MMR (Balanced Audio Video Maximal Marginal Relevance), namely the balance factor between audio information and visual information in the video, but also the importance of face and audio transitions among audio segments with different genres. Therefore, OB-MMR achieves a better result than previous algorithms, Video-MMR and Balanced AV-MMR. Furthermore, it is possible to select the optimized parameters for each genre of videos, which leads to promising automatic algorithms for video summarization in the future large-scale experiments.\",\"PeriodicalId\":358337,\"journal\":{\"name\":\"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2011.5972539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2011.5972539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们提出了一种新的视频摘要算法,OB-MMR(优化平衡音视频最大边际相关性)。该算法既适用于单个视频,也适用于多个视频的总结。OB-MMR是通过优化Balanced AV-MMR (Balanced Audio Video maximum Marginal Relevance,平衡音频视频最大边际相关性)中的参数来实现的,即视频中音频信息和视觉信息之间的平衡因子,以及不同类型音频片段之间人脸和音频过渡的重要性。因此,OB-MMR比之前的Video-MMR和Balanced AV-MMR算法取得了更好的效果。此外,它还可以为每个视频类型选择优化的参数,从而在未来的大规模实验中为视频摘要提供有前途的自动算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-video summarization based on OB-MMR
In this paper we propose a novel algorithm for video summarization, OB-MMR (Optimized Balanced Audio Video Maximal Marginal Relevance). This algorithm is suitable to summarize both single and multiple videos. OB-MMR is achieved by optimizing the parameters in Balanced AV-MMR (Balanced Audio Video Maximal Marginal Relevance), namely the balance factor between audio information and visual information in the video, but also the importance of face and audio transitions among audio segments with different genres. Therefore, OB-MMR achieves a better result than previous algorithms, Video-MMR and Balanced AV-MMR. Furthermore, it is possible to select the optimized parameters for each genre of videos, which leads to promising automatic algorithms for video summarization in the future large-scale experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An efficient method for the unsupervised discovery of signalling motifs in large audio streams Efficient video summarization and retrieval tools Tonal-based retrieval of Arabic and middle-east music by automatic makam description Automatic illustration with cross-media retrieval in large-scale collections Interactive social, spatial and temporal querying for multimedia retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1