基于时间信息和帧采样的人体动作识别图构建

Han Yang, Xueqin Jiang, H. Ge, Yuting Cao, Rong Ye
{"title":"基于时间信息和帧采样的人体动作识别图构建","authors":"Han Yang, Xueqin Jiang, H. Ge, Yuting Cao, Rong Ye","doi":"10.1109/CCISP55629.2022.9974302","DOIUrl":null,"url":null,"abstract":"With the innovation and progress of data analysis, human action recognition has become a significant research direction with broad applications in many situations. We propose a skeleton temporal graph (STG) based on graph signal processing (GSP), graph spectral domain, and human action recognition. The temporal information between adjacent frames of action data is extracted by uniform sampling and redefining temporal edge weights. We reconstruct the graph Laplacian matrix from the skeleton and temporal information. According to the graph Laplacian matrix, the coefficient matrix used for classification is calculated by spectral graph wavelet transform (SGWT). In addition, we use a recent classification method eXtreme Gradient Boosting (XGBoost), to improve experimental accuracy. Our method outperforms the existing approach when applied to three publicly available datasets.","PeriodicalId":431851,"journal":{"name":"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Construction Based on Temporal Information and Frame Sampling for Human Action Recognition\",\"authors\":\"Han Yang, Xueqin Jiang, H. Ge, Yuting Cao, Rong Ye\",\"doi\":\"10.1109/CCISP55629.2022.9974302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the innovation and progress of data analysis, human action recognition has become a significant research direction with broad applications in many situations. We propose a skeleton temporal graph (STG) based on graph signal processing (GSP), graph spectral domain, and human action recognition. The temporal information between adjacent frames of action data is extracted by uniform sampling and redefining temporal edge weights. We reconstruct the graph Laplacian matrix from the skeleton and temporal information. According to the graph Laplacian matrix, the coefficient matrix used for classification is calculated by spectral graph wavelet transform (SGWT). In addition, we use a recent classification method eXtreme Gradient Boosting (XGBoost), to improve experimental accuracy. Our method outperforms the existing approach when applied to three publicly available datasets.\",\"PeriodicalId\":431851,\"journal\":{\"name\":\"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCISP55629.2022.9974302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCISP55629.2022.9974302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着数据分析技术的创新和进步,人体动作识别已成为一个重要的研究方向,在许多情况下都有广泛的应用。我们提出了一种基于图信号处理(GSP)、图谱域和人体动作识别的骨架时间图(STG)。通过均匀采样和重新定义时间边权重,提取动作数据相邻帧间的时间信息。利用骨架和时间信息重构图拉普拉斯矩阵。根据图拉普拉斯矩阵,利用谱图小波变换(SGWT)计算用于分类的系数矩阵。此外,我们使用了一种最新的分类方法极端梯度增强(XGBoost),以提高实验精度。当应用于三个公开可用的数据集时,我们的方法优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph Construction Based on Temporal Information and Frame Sampling for Human Action Recognition
With the innovation and progress of data analysis, human action recognition has become a significant research direction with broad applications in many situations. We propose a skeleton temporal graph (STG) based on graph signal processing (GSP), graph spectral domain, and human action recognition. The temporal information between adjacent frames of action data is extracted by uniform sampling and redefining temporal edge weights. We reconstruct the graph Laplacian matrix from the skeleton and temporal information. According to the graph Laplacian matrix, the coefficient matrix used for classification is calculated by spectral graph wavelet transform (SGWT). In addition, we use a recent classification method eXtreme Gradient Boosting (XGBoost), to improve experimental accuracy. Our method outperforms the existing approach when applied to three publicly available datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A reliable intra-relay cooperative relay network coupling with spatial modulation for the dynamic V2V communication Research on PCEP Extension for VLAN-based Traffic Forwarding in cloud network integration Analysis of the effect of carbon emissions on meteorological factors in Yunnan province Small Sample Signal Modulation Recognition based on Higher-order Cumulants and CatBoost AFMTD: Anchor-free Frame for Multi-scale Target Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1