用于语言识别的多语言深度神经网络

Luis Murphy Marcos, F. Richardson
{"title":"用于语言识别的多语言深度神经网络","authors":"Luis Murphy Marcos, F. Richardson","doi":"10.1109/SLT.2016.7846285","DOIUrl":null,"url":null,"abstract":"Multi-lingual feature extraction using bottleneck layers in deep neural networks (BN-DNNs) has been proven to be an effective technique for low resource speech recognition and more recently for language recognition. In this work we investigate the impact on language recognition performance of the multi-lingual BN-DNN architecture and training configurations for the NIST 2011 and 2015 language recognition evaluations (LRE11 and LRE15). The best performing multi-lingual BN-DNN configuration yields relative performance gains of 50% on LRE11 and 40% on LRE15 compared to a standard MFCC/SDC baseline system and 17% on LRE11 and 7% on LRE15 relative to a single language BN-DNN system. Detailed performance analysis using data from all 24 Babel languages, Fisher Spanish and Switchboard English shows the impact of language selection and the amount of training data on overall BN-DNN performance.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-lingual deep neural networks for language recognition\",\"authors\":\"Luis Murphy Marcos, F. Richardson\",\"doi\":\"10.1109/SLT.2016.7846285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-lingual feature extraction using bottleneck layers in deep neural networks (BN-DNNs) has been proven to be an effective technique for low resource speech recognition and more recently for language recognition. In this work we investigate the impact on language recognition performance of the multi-lingual BN-DNN architecture and training configurations for the NIST 2011 and 2015 language recognition evaluations (LRE11 and LRE15). The best performing multi-lingual BN-DNN configuration yields relative performance gains of 50% on LRE11 and 40% on LRE15 compared to a standard MFCC/SDC baseline system and 17% on LRE11 and 7% on LRE15 relative to a single language BN-DNN system. Detailed performance analysis using data from all 24 Babel languages, Fisher Spanish and Switchboard English shows the impact of language selection and the amount of training data on overall BN-DNN performance.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在深度神经网络(bn - dnn)中使用瓶颈层的多语言特征提取已被证明是低资源语音识别和语言识别的有效技术。在这项工作中,我们研究了NIST 2011年和2015年语言识别评估(LRE11和LRE15)中多语言BN-DNN架构和训练配置对语言识别性能的影响。与标准MFCC/SDC基线系统相比,性能最好的多语言BN-DNN配置在LRE11上的相对性能提高了50%,在LRE15上的相对性能提高了40%,在LRE11上的相对性能提高了17%,在LRE15上的相对性能提高了7%。使用来自所有24种Babel语言、Fisher西班牙语和Switchboard英语的数据进行详细的性能分析,显示了语言选择和训练数据量对BN-DNN整体性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-lingual deep neural networks for language recognition
Multi-lingual feature extraction using bottleneck layers in deep neural networks (BN-DNNs) has been proven to be an effective technique for low resource speech recognition and more recently for language recognition. In this work we investigate the impact on language recognition performance of the multi-lingual BN-DNN architecture and training configurations for the NIST 2011 and 2015 language recognition evaluations (LRE11 and LRE15). The best performing multi-lingual BN-DNN configuration yields relative performance gains of 50% on LRE11 and 40% on LRE15 compared to a standard MFCC/SDC baseline system and 17% on LRE11 and 7% on LRE15 relative to a single language BN-DNN system. Detailed performance analysis using data from all 24 Babel languages, Fisher Spanish and Switchboard English shows the impact of language selection and the amount of training data on overall BN-DNN performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further optimisations of constant Q cepstral processing for integrated utterance and text-dependent speaker verification Learning dialogue dynamics with the method of moments A study of speech distortion conditions in real scenarios for speech processing applications Comparing speaker independent and speaker adapted classification for word prominence detection Influence of corpus size and content on the perceptual quality of a unit selection MaryTTS voice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1