最大限度地利用大规模掩码数据准备集群

P. Gilgenkrantz, Stephen Kim, Wooil Han, Minyoung Park, Min Tsao
{"title":"最大限度地利用大规模掩码数据准备集群","authors":"P. Gilgenkrantz, Stephen Kim, Wooil Han, Minyoung Park, Min Tsao","doi":"10.1117/12.2326553","DOIUrl":null,"url":null,"abstract":"With CMOS technology nodes going further into the realm of sub-wavelength lithography, the need for compute power also increases to meet runtime requirements for reticle enhancement techniques and results validation. Expanding the mask data preparation (MDP) cluster size is an obvious solution to increase compute power, but this can lead to unforeseen events such as network bottlenecks, which must be taken into account. Advanced scalable solutions provided by optical proximity correction (OPC)/mask process correction (MPC) software are obviously critical, but other optimizations such as dynamic CPU allocations (DCA) based on real CPU needs, high-level jobs management, real-time resource monitoring, and bottleneck detection are also important factors for improving cluster utilization in order to meet runtime requirements and handle post-tapeout (PTO) workloads efficiently. In this paper, we will discuss tackling such efforts through various levels of the “cluster utilization stack” from low CPU levels to business levels to head towards maximizing cluster utilization and maintaining lean computing.","PeriodicalId":287066,"journal":{"name":"European Mask and Lithography Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximizing utilization of large-scale mask data preparation clusters\",\"authors\":\"P. Gilgenkrantz, Stephen Kim, Wooil Han, Minyoung Park, Min Tsao\",\"doi\":\"10.1117/12.2326553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With CMOS technology nodes going further into the realm of sub-wavelength lithography, the need for compute power also increases to meet runtime requirements for reticle enhancement techniques and results validation. Expanding the mask data preparation (MDP) cluster size is an obvious solution to increase compute power, but this can lead to unforeseen events such as network bottlenecks, which must be taken into account. Advanced scalable solutions provided by optical proximity correction (OPC)/mask process correction (MPC) software are obviously critical, but other optimizations such as dynamic CPU allocations (DCA) based on real CPU needs, high-level jobs management, real-time resource monitoring, and bottleneck detection are also important factors for improving cluster utilization in order to meet runtime requirements and handle post-tapeout (PTO) workloads efficiently. In this paper, we will discuss tackling such efforts through various levels of the “cluster utilization stack” from low CPU levels to business levels to head towards maximizing cluster utilization and maintaining lean computing.\",\"PeriodicalId\":287066,\"journal\":{\"name\":\"European Mask and Lithography Conference\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Mask and Lithography Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2326553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Mask and Lithography Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2326553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着CMOS技术节点进一步进入亚波长光刻领域,对计算能力的需求也在增加,以满足光栅增强技术和结果验证的运行时要求。扩大掩码数据准备(MDP)集群的大小是提高计算能力的一种明显的解决方案,但这可能导致不可预见的事件,如网络瓶颈,必须考虑到这一点。光学接近校正(OPC)/掩码过程校正(MPC)软件提供的高级可扩展解决方案显然是至关重要的,但其他优化,如基于实际CPU需求的动态CPU分配(DCA)、高级作业管理、实时资源监控和瓶颈检测,也是提高集群利用率的重要因素,以满足运行时要求并有效地处理后tapeout (PTO)工作负载。在本文中,我们将讨论通过从低CPU级别到业务级别的不同级别的“集群利用堆栈”来解决这些问题,以实现集群利用率最大化并维护精益计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximizing utilization of large-scale mask data preparation clusters
With CMOS technology nodes going further into the realm of sub-wavelength lithography, the need for compute power also increases to meet runtime requirements for reticle enhancement techniques and results validation. Expanding the mask data preparation (MDP) cluster size is an obvious solution to increase compute power, but this can lead to unforeseen events such as network bottlenecks, which must be taken into account. Advanced scalable solutions provided by optical proximity correction (OPC)/mask process correction (MPC) software are obviously critical, but other optimizations such as dynamic CPU allocations (DCA) based on real CPU needs, high-level jobs management, real-time resource monitoring, and bottleneck detection are also important factors for improving cluster utilization in order to meet runtime requirements and handle post-tapeout (PTO) workloads efficiently. In this paper, we will discuss tackling such efforts through various levels of the “cluster utilization stack” from low CPU levels to business levels to head towards maximizing cluster utilization and maintaining lean computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synergy between quantum computing and semiconductor technology New registration calibration strategies for MBMW tools by PROVE measurements OPC flow for non-conventional layouts: specific application to optical diffusers Lithographic performance of resist ma-N 1402 in an e-beam/i-line stepper intra-level mix and match approach High-precision optical constant characterization of materials in the EUV spectral range: from large research facilities to laboratory-based instruments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1