深度度量学习与三重网络:应用于手部肌强直量化

Lei Lin, Beilei Xu, Wencheng Wu, Trevor W. Richardson, Edgar A. Bernal, Bill Martens, C. Thornton, C. Heatwole
{"title":"深度度量学习与三重网络:应用于手部肌强直量化","authors":"Lei Lin, Beilei Xu, Wencheng Wu, Trevor W. Richardson, Edgar A. Bernal, Bill Martens, C. Thornton, C. Heatwole","doi":"10.1109/HI-POCT45284.2019.8962888","DOIUrl":null,"url":null,"abstract":"Myotonia, which refers to delayed muscle relaxation after contraction, is the main symptom of myotonic dystrophy patients. The relaxation time after a hand squeeze has been used as a biomarker for diagnostic purposes and in clinical trials to quantify the effectiveness of a treatment. Current processes that rely on handcrafted features tend to be sensitive to data acquisition noise and intra- and inter-patient variability. In this work, we develop a deep metric learning framework for analyzing the hand-grip time series based on triplet-networks. Experiments show that the learned embedding space can be used to quantify the symptoms, evaluate the effectiveness of treatments, and design new data collection protocols.","PeriodicalId":269346,"journal":{"name":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Metric Learning with Triplet Networks: Application to Hand-grip Myotonia Quantification\",\"authors\":\"Lei Lin, Beilei Xu, Wencheng Wu, Trevor W. Richardson, Edgar A. Bernal, Bill Martens, C. Thornton, C. Heatwole\",\"doi\":\"10.1109/HI-POCT45284.2019.8962888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Myotonia, which refers to delayed muscle relaxation after contraction, is the main symptom of myotonic dystrophy patients. The relaxation time after a hand squeeze has been used as a biomarker for diagnostic purposes and in clinical trials to quantify the effectiveness of a treatment. Current processes that rely on handcrafted features tend to be sensitive to data acquisition noise and intra- and inter-patient variability. In this work, we develop a deep metric learning framework for analyzing the hand-grip time series based on triplet-networks. Experiments show that the learned embedding space can be used to quantify the symptoms, evaluate the effectiveness of treatments, and design new data collection protocols.\",\"PeriodicalId\":269346,\"journal\":{\"name\":\"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HI-POCT45284.2019.8962888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HI-POCT45284.2019.8962888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

肌强直是指收缩后肌肉松弛延迟,是肌强直营养不良患者的主要症状。握紧手后的放松时间已被用作诊断目的的生物标志物,并在临床试验中用于量化治疗效果。目前依赖于手工特征的过程往往对数据采集噪声和患者内部和患者之间的可变性很敏感。在这项工作中,我们开发了一个基于三重网络的深度度量学习框架,用于分析手部握力时间序列。实验表明,学习嵌入空间可用于量化症状、评估治疗效果和设计新的数据收集方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Metric Learning with Triplet Networks: Application to Hand-grip Myotonia Quantification
Myotonia, which refers to delayed muscle relaxation after contraction, is the main symptom of myotonic dystrophy patients. The relaxation time after a hand squeeze has been used as a biomarker for diagnostic purposes and in clinical trials to quantify the effectiveness of a treatment. Current processes that rely on handcrafted features tend to be sensitive to data acquisition noise and intra- and inter-patient variability. In this work, we develop a deep metric learning framework for analyzing the hand-grip time series based on triplet-networks. Experiments show that the learned embedding space can be used to quantify the symptoms, evaluate the effectiveness of treatments, and design new data collection protocols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Nanoscale Electrode for Biosensing A Motion Free Image Based TRF Reader for Quantitative Immunoassay Gaze-based video games for assessment of attention outside of the lab Conjugated Barcoded Particles for Multiplexed Biomarker Quantification with a Microfluidic Biochip Daily Locomotor Movement Recognition with a Smart Insole and a Pre-defined Route Map: Towards Early Motor Dysfunction Detection*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1