{"title":"利用自定义杜鹃滤波器降低虹膜识别模板保护的错误率","authors":"K. Raja, Ramachandra Raghavendra, C. Busch","doi":"10.1109/ISBA.2019.8778470","DOIUrl":null,"url":null,"abstract":"The need to protect biometric data within iris systems has resulted in a number of template protection schemes. A primary issue with current template protection schemes for iris recognition is the unavoidable biometric error rates, i.e., for any given False Non-Match Rate (FNMR) there is a high False Match Rate (FMR), especially at lower values of FNMR. In this work, we primarily focus on addressing this problem using a new approach with Cuckoo Filtering simultaneously using both stable bits and discriminative bits to derive a stronger template protection scheme. The proposed template protection scheme performs in a robust manner for various configurations as compared to earlier template protection schemes that need empirical fine-tuning. With the set of experiments on a publicly available iris dataset, we benchmark our results against the state-of-art template protection scheme based on Bloom-Filters. Specifically, we demonstrate the gain in performance and robustness of proposed approach at lower FNMR and invariance of performance to configurations of template protection scheme. With a specific configuration of proposed approach, we achieve Genuine Match Rate (GMR) = 100% at FMR = 0:01% and EER = 0% in the best case and GMR = 98:44% at FMR = 0:01% and EER = 0:33% in the worst case on IITD Iris database.","PeriodicalId":270033,"journal":{"name":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","volume":"06 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Towards Reducing the Error Rates in Template Protection for Iris Recognition Using Custom Cuckoo Filters\",\"authors\":\"K. Raja, Ramachandra Raghavendra, C. Busch\",\"doi\":\"10.1109/ISBA.2019.8778470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need to protect biometric data within iris systems has resulted in a number of template protection schemes. A primary issue with current template protection schemes for iris recognition is the unavoidable biometric error rates, i.e., for any given False Non-Match Rate (FNMR) there is a high False Match Rate (FMR), especially at lower values of FNMR. In this work, we primarily focus on addressing this problem using a new approach with Cuckoo Filtering simultaneously using both stable bits and discriminative bits to derive a stronger template protection scheme. The proposed template protection scheme performs in a robust manner for various configurations as compared to earlier template protection schemes that need empirical fine-tuning. With the set of experiments on a publicly available iris dataset, we benchmark our results against the state-of-art template protection scheme based on Bloom-Filters. Specifically, we demonstrate the gain in performance and robustness of proposed approach at lower FNMR and invariance of performance to configurations of template protection scheme. With a specific configuration of proposed approach, we achieve Genuine Match Rate (GMR) = 100% at FMR = 0:01% and EER = 0% in the best case and GMR = 98:44% at FMR = 0:01% and EER = 0:33% in the worst case on IITD Iris database.\",\"PeriodicalId\":270033,\"journal\":{\"name\":\"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)\",\"volume\":\"06 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBA.2019.8778470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2019.8778470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Reducing the Error Rates in Template Protection for Iris Recognition Using Custom Cuckoo Filters
The need to protect biometric data within iris systems has resulted in a number of template protection schemes. A primary issue with current template protection schemes for iris recognition is the unavoidable biometric error rates, i.e., for any given False Non-Match Rate (FNMR) there is a high False Match Rate (FMR), especially at lower values of FNMR. In this work, we primarily focus on addressing this problem using a new approach with Cuckoo Filtering simultaneously using both stable bits and discriminative bits to derive a stronger template protection scheme. The proposed template protection scheme performs in a robust manner for various configurations as compared to earlier template protection schemes that need empirical fine-tuning. With the set of experiments on a publicly available iris dataset, we benchmark our results against the state-of-art template protection scheme based on Bloom-Filters. Specifically, we demonstrate the gain in performance and robustness of proposed approach at lower FNMR and invariance of performance to configurations of template protection scheme. With a specific configuration of proposed approach, we achieve Genuine Match Rate (GMR) = 100% at FMR = 0:01% and EER = 0% in the best case and GMR = 98:44% at FMR = 0:01% and EER = 0:33% in the worst case on IITD Iris database.