基于四叉树分解的手部静脉分段混合压缩技术

Mohamed N. Saad, A. Kandil
{"title":"基于四叉树分解的手部静脉分段混合压缩技术","authors":"Mohamed N. Saad, A. Kandil","doi":"10.1109/CIBEC.2012.6473292","DOIUrl":null,"url":null,"abstract":"Biometrics are techniques for automatically identifying and authenticating an individual based on his physiological or behavioral characteristics. Hand vein is one of the biometric modalities. Hand vein check measures the shape and size of veins in the back of the hand in a grayscale image. In this paper, hybrid compression technique is applied on ninety hand vein images. This hybrid technique is combining the advantages of lossless techniques and lossy techniques. Only the essential information is selected and compressed using lossless technique, and nonessential information is compressed using lossy technique. The observed parameters are compression ratio (CR), total compression time (TCT), mean square error (MSE), and peak signal to noise ratio (PSNR). The goal is to maximize the CR while preserving images' information. This is acheived using object segmentation procedure and quad tree decomposition (QTD) as preprocessing steps for the compression process. Applying the hybrid technique on the dataset images results in a CR in the range of 89.56%.","PeriodicalId":416740,"journal":{"name":"2012 Cairo International Biomedical Engineering Conference (CIBEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid compression technique for segmented hand veins using quad tree decomposition\",\"authors\":\"Mohamed N. Saad, A. Kandil\",\"doi\":\"10.1109/CIBEC.2012.6473292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biometrics are techniques for automatically identifying and authenticating an individual based on his physiological or behavioral characteristics. Hand vein is one of the biometric modalities. Hand vein check measures the shape and size of veins in the back of the hand in a grayscale image. In this paper, hybrid compression technique is applied on ninety hand vein images. This hybrid technique is combining the advantages of lossless techniques and lossy techniques. Only the essential information is selected and compressed using lossless technique, and nonessential information is compressed using lossy technique. The observed parameters are compression ratio (CR), total compression time (TCT), mean square error (MSE), and peak signal to noise ratio (PSNR). The goal is to maximize the CR while preserving images' information. This is acheived using object segmentation procedure and quad tree decomposition (QTD) as preprocessing steps for the compression process. Applying the hybrid technique on the dataset images results in a CR in the range of 89.56%.\",\"PeriodicalId\":416740,\"journal\":{\"name\":\"2012 Cairo International Biomedical Engineering Conference (CIBEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Cairo International Biomedical Engineering Conference (CIBEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBEC.2012.6473292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Cairo International Biomedical Engineering Conference (CIBEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBEC.2012.6473292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物识别技术是根据个人的生理或行为特征自动识别和认证个人的技术。手部静脉是一种生物识别方式。手静脉检查测量灰度图像中手背静脉的形状和大小。本文将混合压缩技术应用于90张手部静脉图像。这种混合技术结合了无损技术和有损技术的优点。只选择必要的信息并使用无损技术进行压缩,非必要的信息使用有损技术进行压缩。观测参数包括压缩比(CR)、总压缩时间(TCT)、均方误差(MSE)和峰值信噪比(PSNR)。目标是在保留图像信息的同时最大化CR。这是使用目标分割程序和四叉树分解(QTD)作为压缩过程的预处理步骤来实现的。将混合技术应用于数据集图像上,CR在89.56%范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid compression technique for segmented hand veins using quad tree decomposition
Biometrics are techniques for automatically identifying and authenticating an individual based on his physiological or behavioral characteristics. Hand vein is one of the biometric modalities. Hand vein check measures the shape and size of veins in the back of the hand in a grayscale image. In this paper, hybrid compression technique is applied on ninety hand vein images. This hybrid technique is combining the advantages of lossless techniques and lossy techniques. Only the essential information is selected and compressed using lossless technique, and nonessential information is compressed using lossy technique. The observed parameters are compression ratio (CR), total compression time (TCT), mean square error (MSE), and peak signal to noise ratio (PSNR). The goal is to maximize the CR while preserving images' information. This is acheived using object segmentation procedure and quad tree decomposition (QTD) as preprocessing steps for the compression process. Applying the hybrid technique on the dataset images results in a CR in the range of 89.56%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D automated colon segmentation for efficient polyp detection Pectoral muscle identification in mammograms for Computer Aided Diagnosis of breast cancer High performance multi-dimensional (2D/3D) FFT-Shift implementation on Graphics Processing Units (GPUs) A system dynamics based model for medical equipment maintenance procedure planning in developing countries Accurate analysis of cardiac tagged MRI using combined HARP and optical flow tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1