基于场景的逆和二分法的近似模糊逆矩阵计算方法

Hande Günay Akdemir
{"title":"基于场景的逆和二分法的近似模糊逆矩阵计算方法","authors":"Hande Günay Akdemir","doi":"10.33401/fujma.1195121","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a numerical method to construct the inverse of a square matrix whose elements are trapezoidal or triangular fuzzy numbers (FNs). A set of fuzzy linear equations is required to be solved in order to determine the fuzzy inverse matrix. The proposed technique first iteratively searches the possible solution intervals and then narrows those too-wide estimated intervals via bisection. Using interval arithmetic in left and right matrix multiplication, we aim to approximate the identity matrix as a result of product operations. The dissimilarity of the endpoints of intervals belonging to multiplication matrices with the identity matrix is considered to be an error function to be minimized. In this way, even if the entries of a matrix are uncertain, the fuzzy inverse matrix containing all inverse matrices can be found quickly with the use of computer technology. The method is explained and comparisons are drawn with inverse stable examples from the literature.","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"134 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Fuzzy Inverse Matrix Calculation Method using Scenario-based Inverses and Bisection\",\"authors\":\"Hande Günay Akdemir\",\"doi\":\"10.33401/fujma.1195121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a numerical method to construct the inverse of a square matrix whose elements are trapezoidal or triangular fuzzy numbers (FNs). A set of fuzzy linear equations is required to be solved in order to determine the fuzzy inverse matrix. The proposed technique first iteratively searches the possible solution intervals and then narrows those too-wide estimated intervals via bisection. Using interval arithmetic in left and right matrix multiplication, we aim to approximate the identity matrix as a result of product operations. The dissimilarity of the endpoints of intervals belonging to multiplication matrices with the identity matrix is considered to be an error function to be minimized. In this way, even if the entries of a matrix are uncertain, the fuzzy inverse matrix containing all inverse matrices can be found quickly with the use of computer technology. The method is explained and comparisons are drawn with inverse stable examples from the literature.\",\"PeriodicalId\":199091,\"journal\":{\"name\":\"Fundamental Journal of Mathematics and Applications\",\"volume\":\"134 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33401/fujma.1195121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/fujma.1195121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种构造元为梯形或三角模糊数的方阵逆的数值方法。为了确定模糊逆矩阵,需要求解一组模糊线性方程。该方法首先迭代地搜索可能的解区间,然后通过等分法缩小过于宽的估计区间。利用区间算法在左右矩阵乘法中,我们的目的是近似单位矩阵作为乘积运算的结果。将属于乘法矩阵的区间的端点与单位矩阵的端点的不相似性看作是一个要最小化的误差函数。这样,即使矩阵的元素是不确定的,利用计算机技术也可以快速找到包含所有逆矩阵的模糊逆矩阵。对该方法进行了说明,并与文献中的稳定逆算例进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximate Fuzzy Inverse Matrix Calculation Method using Scenario-based Inverses and Bisection
In this paper, we introduce a numerical method to construct the inverse of a square matrix whose elements are trapezoidal or triangular fuzzy numbers (FNs). A set of fuzzy linear equations is required to be solved in order to determine the fuzzy inverse matrix. The proposed technique first iteratively searches the possible solution intervals and then narrows those too-wide estimated intervals via bisection. Using interval arithmetic in left and right matrix multiplication, we aim to approximate the identity matrix as a result of product operations. The dissimilarity of the endpoints of intervals belonging to multiplication matrices with the identity matrix is considered to be an error function to be minimized. In this way, even if the entries of a matrix are uncertain, the fuzzy inverse matrix containing all inverse matrices can be found quickly with the use of computer technology. The method is explained and comparisons are drawn with inverse stable examples from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New Exact and Numerical Experiments for the Caudrey-Dodd-Gibbon Equation A Note On Kantorovich Type Operators Which Preserve Affine Functions On an $\left( \iota ,x_{0}\right) $-Generalized Logistic-Type Function The Qualitative Analysis of Some Difference Equations Using Homogeneous Functions A New Generalization of Szasz-Mirakjan Kantorovich Operators for Better Error Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1