多元投资组合构建的可解释机器学习

Markus Jaeger, Stephan Krügel, D. Marinelli, Jochen Papenbrock, Peter Schwendner
{"title":"多元投资组合构建的可解释机器学习","authors":"Markus Jaeger, Stephan Krügel, D. Marinelli, Jochen Papenbrock, Peter Schwendner","doi":"10.2139/ssrn.3730144","DOIUrl":null,"url":null,"abstract":"In this article, the authors construct a pipeline to benchmark hierarchical risk parity (HRP) relative to equal risk contribution (ERC) as examples of diversification strategies allocating to liquid multi-asset futures markets with dynamic leverage (volatility target). The authors use interpretable machine learning concepts (explainable AI) to compare the robustness of the strategies and to back out implicit rules for decision-making. The empirical dataset consists of 17 equity index, government bond, and commodity futures markets across 20 years. The two strategies are back tested for the empirical dataset and for about 100,000 bootstrapped datasets. XGBoost is used to regress the Calmar ratio spread between the two strategies against features of the bootstrapped datasets. Compared to ERC, HRP shows higher Calmar ratios and better matches the volatility target. Using Shapley values, the Calmar ratio spread can be attributed especially to univariate drawdown measures of the asset classes. TOPICS: Quantitative methods, statistical methods, big data/machine learning, portfolio construction, performance measurement Key Findings ▪ The authors introduce a procedure to benchmark rule-based investment strategies and to explain the differences in path-dependent risk-adjusted performance measures using interpretable machine learning. ▪ They apply the procedure to the Calmar ratio spread between hierarchical risk parity (HRP) and equal risk contribution (ERC) allocations of a multi-asset futures portfolio and find HRP to have superior risk-adjusted performance. ▪ The authors regress the Calmar ratio spread against statistical features of bootstrapped futures return datasets using XGBoost and apply the SHAP framework by Lundberg and Lee (2017) to discuss the local and global feature importance.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Interpretable Machine Learning for Diversified Portfolio Construction\",\"authors\":\"Markus Jaeger, Stephan Krügel, D. Marinelli, Jochen Papenbrock, Peter Schwendner\",\"doi\":\"10.2139/ssrn.3730144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the authors construct a pipeline to benchmark hierarchical risk parity (HRP) relative to equal risk contribution (ERC) as examples of diversification strategies allocating to liquid multi-asset futures markets with dynamic leverage (volatility target). The authors use interpretable machine learning concepts (explainable AI) to compare the robustness of the strategies and to back out implicit rules for decision-making. The empirical dataset consists of 17 equity index, government bond, and commodity futures markets across 20 years. The two strategies are back tested for the empirical dataset and for about 100,000 bootstrapped datasets. XGBoost is used to regress the Calmar ratio spread between the two strategies against features of the bootstrapped datasets. Compared to ERC, HRP shows higher Calmar ratios and better matches the volatility target. Using Shapley values, the Calmar ratio spread can be attributed especially to univariate drawdown measures of the asset classes. TOPICS: Quantitative methods, statistical methods, big data/machine learning, portfolio construction, performance measurement Key Findings ▪ The authors introduce a procedure to benchmark rule-based investment strategies and to explain the differences in path-dependent risk-adjusted performance measures using interpretable machine learning. ▪ They apply the procedure to the Calmar ratio spread between hierarchical risk parity (HRP) and equal risk contribution (ERC) allocations of a multi-asset futures portfolio and find HRP to have superior risk-adjusted performance. ▪ The authors regress the Calmar ratio spread against statistical features of bootstrapped futures return datasets using XGBoost and apply the SHAP framework by Lundberg and Lee (2017) to discuss the local and global feature importance.\",\"PeriodicalId\":199045,\"journal\":{\"name\":\"The Journal of Financial Data Science\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Financial Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3730144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3730144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,作者构建了一个管道来衡量相对于等风险贡献(ERC)的分层风险平价(HRP),作为分散策略配置到具有动态杠杆(波动率目标)的流动性多资产期货市场的例子。作者使用可解释的机器学习概念(可解释的人工智能)来比较策略的鲁棒性,并退出决策的隐含规则。实证数据集包括17个20年的股票指数、政府债券和商品期货市场。这两种策略对经验数据集和大约100,000个自举数据集进行了反向测试。XGBoost用于根据引导数据集的特征回归两种策略之间的Calmar比率分布。与ERC相比,HRP显示出更高的Calmar比率,并且更好地匹配波动率目标。使用Shapley值,Calmar比率价差可以特别归因于资产类别的单变量收缩措施。主题:定量方法,统计方法,大数据/机器学习,投资组合构建,绩效衡量。主要发现▪作者介绍了一个程序,以基准规则为基础的投资策略,并解释路径依赖风险调整绩效指标的差异,使用可解释的机器学习。▪他们将该程序应用于多资产期货投资组合的分层风险平价(HRP)和等风险贡献(ERC)分配之间的Calmar比率差,发现HRP具有优越的风险调整绩效。▪作者使用XGBoost对自举期货回报数据集的统计特征回归Calmar比率扩散,并应用Lundberg和Lee(2017)的SHAP框架来讨论局部和全局特征的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interpretable Machine Learning for Diversified Portfolio Construction
In this article, the authors construct a pipeline to benchmark hierarchical risk parity (HRP) relative to equal risk contribution (ERC) as examples of diversification strategies allocating to liquid multi-asset futures markets with dynamic leverage (volatility target). The authors use interpretable machine learning concepts (explainable AI) to compare the robustness of the strategies and to back out implicit rules for decision-making. The empirical dataset consists of 17 equity index, government bond, and commodity futures markets across 20 years. The two strategies are back tested for the empirical dataset and for about 100,000 bootstrapped datasets. XGBoost is used to regress the Calmar ratio spread between the two strategies against features of the bootstrapped datasets. Compared to ERC, HRP shows higher Calmar ratios and better matches the volatility target. Using Shapley values, the Calmar ratio spread can be attributed especially to univariate drawdown measures of the asset classes. TOPICS: Quantitative methods, statistical methods, big data/machine learning, portfolio construction, performance measurement Key Findings ▪ The authors introduce a procedure to benchmark rule-based investment strategies and to explain the differences in path-dependent risk-adjusted performance measures using interpretable machine learning. ▪ They apply the procedure to the Calmar ratio spread between hierarchical risk parity (HRP) and equal risk contribution (ERC) allocations of a multi-asset futures portfolio and find HRP to have superior risk-adjusted performance. ▪ The authors regress the Calmar ratio spread against statistical features of bootstrapped futures return datasets using XGBoost and apply the SHAP framework by Lundberg and Lee (2017) to discuss the local and global feature importance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Managing Editor’s Letter Explainable Machine Learning Models of Consumer Credit Risk Predicting Returns with Machine Learning across Horizons, Firm Size, and Time Deep Calibration with Artificial Neural Network: A Performance Comparison on Option-Pricing Models RIFT: Pretraining and Applications for Representations of Interrelated Financial Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1