基于中国收费公路网交通异质性的分层聚类研究

Shi Fang, Kaigui Bian, Haikun Hong, Kunqing Xie, Yuwen Fu
{"title":"基于中国收费公路网交通异质性的分层聚类研究","authors":"Shi Fang, Kaigui Bian, Haikun Hong, Kunqing Xie, Yuwen Fu","doi":"10.1109/TAAI.2016.7880174","DOIUrl":null,"url":null,"abstract":"The spatial clustering of highway traffic is of great interest to researchers and policy makers. In this paper, instead of using the microscopic traffic parameters in the traditional clustering methods, we introduce a new heterogeneity index clustering the sections of a highway based on differences in the content, a.k.a. “Heterogeneity”, in their flow, which can be used as a universal guideline for network spatial clustering. Using real-world toll station origin to destination (O-D) data in three highway networks of China, we evaluate the stability of the traffic heterogeneity and verify the strong correlation between the traffic heterogeneity and the traffic variation. A case study on the hierarchical clustering for these highway roads was carried out, and we evaluate the clustering performances and show that the heterogeneity is a better partitioning criterion than other conventional traffic indices.","PeriodicalId":159858,"journal":{"name":"2016 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using the traffic heterogeneity of Chinese toll highway networks for hierarchical clustering\",\"authors\":\"Shi Fang, Kaigui Bian, Haikun Hong, Kunqing Xie, Yuwen Fu\",\"doi\":\"10.1109/TAAI.2016.7880174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spatial clustering of highway traffic is of great interest to researchers and policy makers. In this paper, instead of using the microscopic traffic parameters in the traditional clustering methods, we introduce a new heterogeneity index clustering the sections of a highway based on differences in the content, a.k.a. “Heterogeneity”, in their flow, which can be used as a universal guideline for network spatial clustering. Using real-world toll station origin to destination (O-D) data in three highway networks of China, we evaluate the stability of the traffic heterogeneity and verify the strong correlation between the traffic heterogeneity and the traffic variation. A case study on the hierarchical clustering for these highway roads was carried out, and we evaluate the clustering performances and show that the heterogeneity is a better partitioning criterion than other conventional traffic indices.\",\"PeriodicalId\":159858,\"journal\":{\"name\":\"2016 Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAAI.2016.7880174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2016.7880174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高速公路交通的空间聚类问题引起了研究者和决策者的极大兴趣。本文提出了一种基于流量内容差异即“异质性”对公路路段进行聚类的异质性指标,取代了传统聚类方法中使用微观交通参数的方法,可作为网络空间聚类的通用准则。利用中国3个高速公路网中收费站始发至终点(O-D)的真实数据,对交通异质性的稳定性进行了评价,并验证了交通异质性与交通变化之间的强相关性。通过对这些高速公路的分层聚类分析,对其聚类性能进行了评价,结果表明,异质性是一种比其他常规交通指标更好的划分标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using the traffic heterogeneity of Chinese toll highway networks for hierarchical clustering
The spatial clustering of highway traffic is of great interest to researchers and policy makers. In this paper, instead of using the microscopic traffic parameters in the traditional clustering methods, we introduce a new heterogeneity index clustering the sections of a highway based on differences in the content, a.k.a. “Heterogeneity”, in their flow, which can be used as a universal guideline for network spatial clustering. Using real-world toll station origin to destination (O-D) data in three highway networks of China, we evaluate the stability of the traffic heterogeneity and verify the strong correlation between the traffic heterogeneity and the traffic variation. A case study on the hierarchical clustering for these highway roads was carried out, and we evaluate the clustering performances and show that the heterogeneity is a better partitioning criterion than other conventional traffic indices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A cluster-based opinion leader discovery in social network User behavior analysis and commodity recommendation for point-earning apps Extraction of proper names from myanmar text using latent dirichlet allocation Heuristic algorithm for target coverage with connectivity fault-tolerance problem in wireless sensor networks AFIS: Aligning detail-pages for full schema induction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1