广义集成交错码的高效嵌套关键方程求解器结构

Xinmiao Zhang
{"title":"广义集成交错码的高效嵌套关键方程求解器结构","authors":"Xinmiao Zhang","doi":"10.1109/ITA50056.2020.9245015","DOIUrl":null,"url":null,"abstract":"The Generalized Integrated Interleaved (GII) codes nest short Reed-Solomon (RS)/ BCH sub-codewords to generate codewords of stronger RS/BCH codes. They can achieve hyper-speed decoding and good error-correcting performance with low complexity, and hence are one of the best candidates for next-generation terabit/s communications and storage. The key-equation solver (KES) of the nested decoding for correcting extra errors limits the achievable clock frequency and contributes to a significant portion of the decoder area. This paper summarizes our recent work on hardware architecture design for the nested KES. The clock frequency bottleneck is first eliminated by reformulating the nested KES and exploiting architectural transformations. Then the complexity of each processing element (PE) in the nested KES architecture is reduced by a scaled nested KES algorithm. Furthermore, the number of PEs is reduced by exploiting the data dependency and analyzing the minimum number of coefficients to keep for the involved polynomials.","PeriodicalId":137257,"journal":{"name":"2020 Information Theory and Applications Workshop (ITA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Nested Key Equation Solver Architectures for Generalized Integrated Interleaved Codes\",\"authors\":\"Xinmiao Zhang\",\"doi\":\"10.1109/ITA50056.2020.9245015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Generalized Integrated Interleaved (GII) codes nest short Reed-Solomon (RS)/ BCH sub-codewords to generate codewords of stronger RS/BCH codes. They can achieve hyper-speed decoding and good error-correcting performance with low complexity, and hence are one of the best candidates for next-generation terabit/s communications and storage. The key-equation solver (KES) of the nested decoding for correcting extra errors limits the achievable clock frequency and contributes to a significant portion of the decoder area. This paper summarizes our recent work on hardware architecture design for the nested KES. The clock frequency bottleneck is first eliminated by reformulating the nested KES and exploiting architectural transformations. Then the complexity of each processing element (PE) in the nested KES architecture is reduced by a scaled nested KES algorithm. Furthermore, the number of PEs is reduced by exploiting the data dependency and analyzing the minimum number of coefficients to keep for the involved polynomials.\",\"PeriodicalId\":137257,\"journal\":{\"name\":\"2020 Information Theory and Applications Workshop (ITA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA50056.2020.9245015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA50056.2020.9245015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

广义集成交织码通过嵌套短的RS/BCH子码字来生成更强的RS/BCH码字。它们可以以低复杂度实现超高速解码和良好的纠错性能,因此是下一代太比特/秒通信和存储的最佳候选之一。嵌套解码中用于校正额外错误的密钥方程求解器(KES)限制了可实现的时钟频率,并占用了很大一部分解码器面积。本文总结了我们最近在嵌套KES硬件体系结构设计方面的工作。时钟频率瓶颈首先通过重新制定嵌套的KES和利用体系结构转换来消除。然后通过缩放的嵌套KES算法降低了嵌套KES体系结构中各处理元素的复杂度。此外,通过利用数据依赖性和分析所涉及多项式的最小系数数来减少pe的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Nested Key Equation Solver Architectures for Generalized Integrated Interleaved Codes
The Generalized Integrated Interleaved (GII) codes nest short Reed-Solomon (RS)/ BCH sub-codewords to generate codewords of stronger RS/BCH codes. They can achieve hyper-speed decoding and good error-correcting performance with low complexity, and hence are one of the best candidates for next-generation terabit/s communications and storage. The key-equation solver (KES) of the nested decoding for correcting extra errors limits the achievable clock frequency and contributes to a significant portion of the decoder area. This paper summarizes our recent work on hardware architecture design for the nested KES. The clock frequency bottleneck is first eliminated by reformulating the nested KES and exploiting architectural transformations. Then the complexity of each processing element (PE) in the nested KES architecture is reduced by a scaled nested KES algorithm. Furthermore, the number of PEs is reduced by exploiting the data dependency and analyzing the minimum number of coefficients to keep for the involved polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO is Very Useful for Pilot-Free Uplink Communications Simplified Ray Tracing for the Millimeter Wave Channel: A Performance Evaluation On Marton's Achievable Region: Local Tensorization for Product Channels with a Binary Component Improve Robustness of Deep Neural Networks by Coding On Nonnegative CP Tensor Decomposition Robustness to Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1