使用机器学习检测异常:综合调查

D. Mane, S. Sangve, Gopal Upadhye, Sahil Kandhare, Saurabh Mohole, Sanket Sonar, Satej Tupare
{"title":"使用机器学习检测异常:综合调查","authors":"D. Mane, S. Sangve, Gopal Upadhye, Sahil Kandhare, Saurabh Mohole, Sanket Sonar, Satej Tupare","doi":"10.46338/ijetae1122_15","DOIUrl":null,"url":null,"abstract":"Anomaly detection is an important element in the domain of security. As a result, we undertook a literature review on ML algorithms that identify abnormalities. In this paper, we are presenting a review of the 101 research articles describing ML techniques for anomaly detection published between 2015 - 2022.The goal of this paper is to review research papers that have used machine learning to develop anomaly detection algorithmThe forms of anomaly detection examined in this study include system log anomaly detection, network anomaly detection, cloud-based anomaly detection, and anomaly detection in the medical profession. After assessing the selected research articles, we present more than 10 applications of anomaly detection. Also, we have shared a range of datasets used in anomaly detection research, in addition to revealing 30+ new ML models employed in anomaly detection. We have discovered 55 new datasets for anomaly detection. We've noticed that the majority of researchers utilize real-life datasets and an unsupervised learning technique to detect anomalies. Many ML methods may be applied in this subject, so we present a summary of all work done in the previous six years. Keywords Intrusion detection, Artificial intelligence, Anomaly detection, security, Machine learning.","PeriodicalId":169403,"journal":{"name":"International Journal of Emerging Technology and Advanced Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of Anomaly using Machine Learning: A Comprehensive Survey\",\"authors\":\"D. Mane, S. Sangve, Gopal Upadhye, Sahil Kandhare, Saurabh Mohole, Sanket Sonar, Satej Tupare\",\"doi\":\"10.46338/ijetae1122_15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection is an important element in the domain of security. As a result, we undertook a literature review on ML algorithms that identify abnormalities. In this paper, we are presenting a review of the 101 research articles describing ML techniques for anomaly detection published between 2015 - 2022.The goal of this paper is to review research papers that have used machine learning to develop anomaly detection algorithmThe forms of anomaly detection examined in this study include system log anomaly detection, network anomaly detection, cloud-based anomaly detection, and anomaly detection in the medical profession. After assessing the selected research articles, we present more than 10 applications of anomaly detection. Also, we have shared a range of datasets used in anomaly detection research, in addition to revealing 30+ new ML models employed in anomaly detection. We have discovered 55 new datasets for anomaly detection. We've noticed that the majority of researchers utilize real-life datasets and an unsupervised learning technique to detect anomalies. Many ML methods may be applied in this subject, so we present a summary of all work done in the previous six years. Keywords Intrusion detection, Artificial intelligence, Anomaly detection, security, Machine learning.\",\"PeriodicalId\":169403,\"journal\":{\"name\":\"International Journal of Emerging Technology and Advanced Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Emerging Technology and Advanced Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46338/ijetae1122_15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Emerging Technology and Advanced Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46338/ijetae1122_15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

异常检测是安全领域的一个重要内容。因此,我们对识别异常的ML算法进行了文献综述。在本文中,我们对2015年至2022年间发表的101篇描述ML异常检测技术的研究文章进行了回顾。本文的目的是对利用机器学习开发异常检测算法的研究论文进行综述,本文研究的异常检测形式包括系统日志异常检测、网络异常检测、基于云的异常检测和医疗行业的异常检测。在评估了选定的研究文章后,我们提出了10多个异常检测的应用。此外,我们还分享了一系列用于异常检测研究的数据集,以及30多个用于异常检测的新ML模型。我们发现了55个新的异常检测数据集。我们注意到,大多数研究人员利用真实数据集和无监督学习技术来检测异常。许多机器学习方法可以应用于这一主题,因此我们总结了过去六年所做的所有工作。关键词入侵检测,人工智能,异常检测,安全性,机器学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Anomaly using Machine Learning: A Comprehensive Survey
Anomaly detection is an important element in the domain of security. As a result, we undertook a literature review on ML algorithms that identify abnormalities. In this paper, we are presenting a review of the 101 research articles describing ML techniques for anomaly detection published between 2015 - 2022.The goal of this paper is to review research papers that have used machine learning to develop anomaly detection algorithmThe forms of anomaly detection examined in this study include system log anomaly detection, network anomaly detection, cloud-based anomaly detection, and anomaly detection in the medical profession. After assessing the selected research articles, we present more than 10 applications of anomaly detection. Also, we have shared a range of datasets used in anomaly detection research, in addition to revealing 30+ new ML models employed in anomaly detection. We have discovered 55 new datasets for anomaly detection. We've noticed that the majority of researchers utilize real-life datasets and an unsupervised learning technique to detect anomalies. Many ML methods may be applied in this subject, so we present a summary of all work done in the previous six years. Keywords Intrusion detection, Artificial intelligence, Anomaly detection, security, Machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Climate Change on Fish Species Classification Using Machine Learning and Deep Learning Algorithms Bibliometric Analysis of the Influence of Artificial Intelligence on the Development of Education Wireless IoT Networks Security and Lightweight Encryption Schemes- Survey Challenges of Requirements Engineering in Agile Projects: A Systematic Review From Data to Design: An IoT-Based Novel Solution for Combating Distracted Driving and Speeding Events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1