{"title":"熵约束连续可细化标量量子化","authors":"H. Jafarkhani, H. Brunk, N. Farvardin","doi":"10.1109/DCC.1997.582057","DOIUrl":null,"url":null,"abstract":"We study the design of entropy-constrained successively refinable scalar quantizers. We propose two algorithms to minimize the average distortion and design such a quantizer. We consider two sets of constraints on the entropy: (i) constraint on the average rate and (ii) constraint on aggregate rates. Both algorithms can be easily extended to design vector quantizers.","PeriodicalId":403990,"journal":{"name":"Proceedings DCC '97. Data Compression Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Entropy-constrained successively refinable scalar quantization\",\"authors\":\"H. Jafarkhani, H. Brunk, N. Farvardin\",\"doi\":\"10.1109/DCC.1997.582057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the design of entropy-constrained successively refinable scalar quantizers. We propose two algorithms to minimize the average distortion and design such a quantizer. We consider two sets of constraints on the entropy: (i) constraint on the average rate and (ii) constraint on aggregate rates. Both algorithms can be easily extended to design vector quantizers.\",\"PeriodicalId\":403990,\"journal\":{\"name\":\"Proceedings DCC '97. Data Compression Conference\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC '97. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1997.582057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '97. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1997.582057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the design of entropy-constrained successively refinable scalar quantizers. We propose two algorithms to minimize the average distortion and design such a quantizer. We consider two sets of constraints on the entropy: (i) constraint on the average rate and (ii) constraint on aggregate rates. Both algorithms can be easily extended to design vector quantizers.