利用人工神经网络提高混合动力系统模型的精度

M. Atef, M. Abdullah, T. Khatib, M. Romlie
{"title":"利用人工神经网络提高混合动力系统模型的精度","authors":"M. Atef, M. Abdullah, T. Khatib, M. Romlie","doi":"10.1109/SCORED.2019.8896259","DOIUrl":null,"url":null,"abstract":"An improvement for a new hybrid power system model is presented. The improvement considers the most accurate model that gives the exact energy output from the Solar photovoltaic (SPV) system to give more accurate result about the perfect size of the PV in the hybrid photo-voltaic and gas turbine generator (GTG) (H-PVGTG) system. This result will affect the size of both the battery bank and the GTG units. The values must justify the technical requirements of the system reliability. This value is recommended to be 0.01 in Malaysia, and it is known as the Loss of Load Probability (LLP). The main goal of the research is to get the most accurate system size with the lowest Annualized Total Life-Cycle Cost (ATLCC). The mathematical model (Math-M) that has been used in the optimization algorithm saved more than 38 % from the operating cost of the power system that is used to supply the power to Universiti Teknologi PETRONAS (UTP). However, it has an error in the power output compared with the actual site power output. Due to the high operating cost of GTG system compared even with the grid supply in Malaysia, Tenaga Nasional Berhad (TNB). This paper proposed an Artificial Intelligent (AI) model to overcome the increase in the operating cost with lower power output error than the Math-M. The main challenge of the mathematical model was the low accuracy as it has +6.09% error than the actual power output of the SPV system and that is why a black box model (BB-M) has been trained to overcome this problem. A comparison between the BB-M, Math-M, GTG system, and TNB has been presented in this paper. The result concluded that BB-M has more accuracy than Math-M if compared with the actual power output of SPV system.","PeriodicalId":231004,"journal":{"name":"2019 IEEE Student Conference on Research and Development (SCOReD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Utilization of Artificial Neural Networks to Improve the Accuracy of a Hybrid Power System Model\",\"authors\":\"M. Atef, M. Abdullah, T. Khatib, M. Romlie\",\"doi\":\"10.1109/SCORED.2019.8896259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improvement for a new hybrid power system model is presented. The improvement considers the most accurate model that gives the exact energy output from the Solar photovoltaic (SPV) system to give more accurate result about the perfect size of the PV in the hybrid photo-voltaic and gas turbine generator (GTG) (H-PVGTG) system. This result will affect the size of both the battery bank and the GTG units. The values must justify the technical requirements of the system reliability. This value is recommended to be 0.01 in Malaysia, and it is known as the Loss of Load Probability (LLP). The main goal of the research is to get the most accurate system size with the lowest Annualized Total Life-Cycle Cost (ATLCC). The mathematical model (Math-M) that has been used in the optimization algorithm saved more than 38 % from the operating cost of the power system that is used to supply the power to Universiti Teknologi PETRONAS (UTP). However, it has an error in the power output compared with the actual site power output. Due to the high operating cost of GTG system compared even with the grid supply in Malaysia, Tenaga Nasional Berhad (TNB). This paper proposed an Artificial Intelligent (AI) model to overcome the increase in the operating cost with lower power output error than the Math-M. The main challenge of the mathematical model was the low accuracy as it has +6.09% error than the actual power output of the SPV system and that is why a black box model (BB-M) has been trained to overcome this problem. A comparison between the BB-M, Math-M, GTG system, and TNB has been presented in this paper. The result concluded that BB-M has more accuracy than Math-M if compared with the actual power output of SPV system.\",\"PeriodicalId\":231004,\"journal\":{\"name\":\"2019 IEEE Student Conference on Research and Development (SCOReD)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Student Conference on Research and Development (SCOReD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCORED.2019.8896259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCORED.2019.8896259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的混合动力系统模型的改进方法。该改进考虑了最精确的模型,该模型给出了太阳能光伏(SPV)系统的确切能量输出,从而给出了更准确的关于光伏和燃气涡轮发电机(H-PVGTG)混合系统中PV的完美尺寸的结果。这个结果将影响电池组和GTG单元的尺寸。这些值必须符合系统可靠性的技术要求。这个值在马来西亚被推荐为0.01,它被称为负载损失概率(LLP)。本研究的主要目标是以最低的年化总生命周期成本(ATLCC)获得最精确的系统尺寸。优化算法中使用的数学模型(Math-M)从用于向Universiti teknologii PETRONAS (UTP)供电的电力系统的运行成本中节省了38%以上。但输出功率与现场实际输出功率存在误差。由于GTG系统的运行成本即使与马来西亚的电网供应相比也很高,Tenaga Nasional Berhad (TNB)。本文提出了一种人工智能(AI)模型,以克服运行成本增加的问题,并具有比Math-M更小的功率输出误差。数学模型的主要挑战是精度低,因为它比SPV系统的实际功率输出有+6.09%的误差,这就是为什么训练黑箱模型(BB-M)来克服这个问题。本文对BB-M、Math-M、GTG系统和TNB系统进行了比较。结果表明,与SPV系统的实际输出功率相比,BB-M比Math-M精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilization of Artificial Neural Networks to Improve the Accuracy of a Hybrid Power System Model
An improvement for a new hybrid power system model is presented. The improvement considers the most accurate model that gives the exact energy output from the Solar photovoltaic (SPV) system to give more accurate result about the perfect size of the PV in the hybrid photo-voltaic and gas turbine generator (GTG) (H-PVGTG) system. This result will affect the size of both the battery bank and the GTG units. The values must justify the technical requirements of the system reliability. This value is recommended to be 0.01 in Malaysia, and it is known as the Loss of Load Probability (LLP). The main goal of the research is to get the most accurate system size with the lowest Annualized Total Life-Cycle Cost (ATLCC). The mathematical model (Math-M) that has been used in the optimization algorithm saved more than 38 % from the operating cost of the power system that is used to supply the power to Universiti Teknologi PETRONAS (UTP). However, it has an error in the power output compared with the actual site power output. Due to the high operating cost of GTG system compared even with the grid supply in Malaysia, Tenaga Nasional Berhad (TNB). This paper proposed an Artificial Intelligent (AI) model to overcome the increase in the operating cost with lower power output error than the Math-M. The main challenge of the mathematical model was the low accuracy as it has +6.09% error than the actual power output of the SPV system and that is why a black box model (BB-M) has been trained to overcome this problem. A comparison between the BB-M, Math-M, GTG system, and TNB has been presented in this paper. The result concluded that BB-M has more accuracy than Math-M if compared with the actual power output of SPV system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preliminary Implementation of the Next Generation Cannulation Simulator Multi-Input Power Converter for Renewable Energy Sources using Active Current Sharing Schemes Understanding the differences in students' attitudes towards social media use: A case study from Oman Effect Of Neurofeedback 2D and 3D Stimulus Content On Stress Mitigation Investigation of Segmented Rotor FEFSSM with Non-Overlap Windings in Various Slot-Pole Configurations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1