可修系统现场故障数据的年龄调整比较

T. Halim, L. Tang
{"title":"可修系统现场故障数据的年龄调整比较","authors":"T. Halim, L. Tang","doi":"10.1109/RAMS.2008.4925769","DOIUrl":null,"url":null,"abstract":"The conventional calendar-based mean cumulative function (MCF) plot is useful in monitoring the field reliability of a population of repairable systems deployed in a large quantity. It is simple and easily understood by management. However, it is age-confounded when the system population is heterogeneous with age. Assuming that the systems follow the well-known ldquoBathtubrdquo behavior, the population which consists of a higher proportion of aged systems will perform badly on the MCF plot compared to another population made up of mainly newer systems. Hence, direct comparisons between the two populations may not be fair. This paper illustrates a few simple steps that aid in mitigating such age heterogeneity issue prior to plotting the MCF. The age-adjusted MCF allows a fairer comparison of maintenance performance between the populations. The applicability of the proposed approach is demonstrated using actual field failure data. The case study shows that if differences in system age compositions are not accounted for, different conclusions could be drawn which could be detrimental to the maintenance personnel morale. Worse still, precious maintenance resources might be channeled to the wrong location. Other than age, the proposed approach can be easily extended to adjust for other system attributes.","PeriodicalId":143940,"journal":{"name":"2008 Annual Reliability and Maintainability Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An age-adjusted comparison of field failure data for repairable systems\",\"authors\":\"T. Halim, L. Tang\",\"doi\":\"10.1109/RAMS.2008.4925769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conventional calendar-based mean cumulative function (MCF) plot is useful in monitoring the field reliability of a population of repairable systems deployed in a large quantity. It is simple and easily understood by management. However, it is age-confounded when the system population is heterogeneous with age. Assuming that the systems follow the well-known ldquoBathtubrdquo behavior, the population which consists of a higher proportion of aged systems will perform badly on the MCF plot compared to another population made up of mainly newer systems. Hence, direct comparisons between the two populations may not be fair. This paper illustrates a few simple steps that aid in mitigating such age heterogeneity issue prior to plotting the MCF. The age-adjusted MCF allows a fairer comparison of maintenance performance between the populations. The applicability of the proposed approach is demonstrated using actual field failure data. The case study shows that if differences in system age compositions are not accounted for, different conclusions could be drawn which could be detrimental to the maintenance personnel morale. Worse still, precious maintenance resources might be channeled to the wrong location. Other than age, the proposed approach can be easily extended to adjust for other system attributes.\",\"PeriodicalId\":143940,\"journal\":{\"name\":\"2008 Annual Reliability and Maintainability Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Annual Reliability and Maintainability Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMS.2008.4925769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Annual Reliability and Maintainability Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS.2008.4925769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

传统的基于日历的平均累积函数(MCF)图对于监测大量部署的可修系统的现场可靠性是有用的。它简单易懂,易于管理人员理解。然而,当系统人口随年龄异质性时,它是年龄混淆的。假设系统遵循众所周知的ldquathtubrdquo行为,与主要由新系统组成的种群相比,由较高比例的老化系统组成的种群在MCF图上的表现较差。因此,直接比较这两个群体可能是不公平的。本文阐述了几个简单的步骤,有助于在绘制MCF之前减轻这种年龄异质性问题。年龄调整后的MCF可以更公平地比较不同人群的维护性能。通过现场实际故障数据验证了该方法的适用性。案例研究表明,如果不考虑系统年龄组成的差异,可能会得出不同的结论,这可能会损害维护人员的士气。更糟糕的是,宝贵的维护资源可能会被输送到错误的位置。除了年龄,建议的方法可以很容易地扩展到调整其他系统属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An age-adjusted comparison of field failure data for repairable systems
The conventional calendar-based mean cumulative function (MCF) plot is useful in monitoring the field reliability of a population of repairable systems deployed in a large quantity. It is simple and easily understood by management. However, it is age-confounded when the system population is heterogeneous with age. Assuming that the systems follow the well-known ldquoBathtubrdquo behavior, the population which consists of a higher proportion of aged systems will perform badly on the MCF plot compared to another population made up of mainly newer systems. Hence, direct comparisons between the two populations may not be fair. This paper illustrates a few simple steps that aid in mitigating such age heterogeneity issue prior to plotting the MCF. The age-adjusted MCF allows a fairer comparison of maintenance performance between the populations. The applicability of the proposed approach is demonstrated using actual field failure data. The case study shows that if differences in system age compositions are not accounted for, different conclusions could be drawn which could be detrimental to the maintenance personnel morale. Worse still, precious maintenance resources might be channeled to the wrong location. Other than age, the proposed approach can be easily extended to adjust for other system attributes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
What's wrong with bent pin analysis, and what to do about it A systems reliability approach to decision making in autonomous multi-platform systems operating a phased mission Software tools for PRA Optimal highway maintenance policies under uncertainty Reliability analysis of phased-mission systems using Bayesian networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1