FaceFetch:基于面部表情识别的用户情感驱动多媒体内容推荐系统

Mahesh Babu Mariappan, Myunghoon Suk, B. Prabhakaran
{"title":"FaceFetch:基于面部表情识别的用户情感驱动多媒体内容推荐系统","authors":"Mahesh Babu Mariappan, Myunghoon Suk, B. Prabhakaran","doi":"10.1109/ISM.2012.24","DOIUrl":null,"url":null,"abstract":"Recognition of facial expressions of users allows researchers to build context-aware applications that adapt according to the users' emotional states. Facial expression recognition is an active area of research in the computer vision community. In this paper, we present Face Fetch, a novel context-based multimedia content recommendation system that understands a user's current emotional state (happiness, sadness, fear, disgust, surprise and anger) through facial expression recognition and recommends multimedia content to the user. Our system can understand a user's emotional state through a desktop as well as a mobile user interface and pull multimedia content such as music, movies and other videos of interest to the user from the cloud with near real time performance.","PeriodicalId":282528,"journal":{"name":"2012 IEEE International Symposium on Multimedia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"FaceFetch: A User Emotion Driven Multimedia Content Recommendation System Based on Facial Expression Recognition\",\"authors\":\"Mahesh Babu Mariappan, Myunghoon Suk, B. Prabhakaran\",\"doi\":\"10.1109/ISM.2012.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognition of facial expressions of users allows researchers to build context-aware applications that adapt according to the users' emotional states. Facial expression recognition is an active area of research in the computer vision community. In this paper, we present Face Fetch, a novel context-based multimedia content recommendation system that understands a user's current emotional state (happiness, sadness, fear, disgust, surprise and anger) through facial expression recognition and recommends multimedia content to the user. Our system can understand a user's emotional state through a desktop as well as a mobile user interface and pull multimedia content such as music, movies and other videos of interest to the user from the cloud with near real time performance.\",\"PeriodicalId\":282528,\"journal\":{\"name\":\"2012 IEEE International Symposium on Multimedia\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2012.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2012.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

对用户面部表情的识别使研究人员能够根据用户的情绪状态构建上下文感知应用程序。面部表情识别是计算机视觉领域的一个活跃研究领域。在本文中,我们提出了一种新的基于上下文的多媒体内容推荐系统Face Fetch,它通过面部表情识别来理解用户当前的情绪状态(快乐、悲伤、恐惧、厌恶、惊讶和愤怒),并向用户推荐多媒体内容。我们的系统可以通过桌面和移动用户界面了解用户的情绪状态,并以接近实时的性能从云端提取用户感兴趣的多媒体内容,如音乐、电影和其他视频。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FaceFetch: A User Emotion Driven Multimedia Content Recommendation System Based on Facial Expression Recognition
Recognition of facial expressions of users allows researchers to build context-aware applications that adapt according to the users' emotional states. Facial expression recognition is an active area of research in the computer vision community. In this paper, we present Face Fetch, a novel context-based multimedia content recommendation system that understands a user's current emotional state (happiness, sadness, fear, disgust, surprise and anger) through facial expression recognition and recommends multimedia content to the user. Our system can understand a user's emotional state through a desktop as well as a mobile user interface and pull multimedia content such as music, movies and other videos of interest to the user from the cloud with near real time performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detailed Comparative Analysis of VP8 and H.264 Enhancing the MST-CSS Representation Using Robust Geometric Features, for Efficient Content Based Video Retrieval (CBVR) A Standardized Metadata Set for Annotation of Virtual and Remote Laboratories Using Wavelets and Gaussian Mixture Models for Audio Classification A Data Aware Admission Control Technique for Social Live Streams (SOLISs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1