{"title":"快速协方差相交的保守量化","authors":"Christopher Funk, B. Noack, U. Hanebeck","doi":"10.1109/MFI49285.2020.9235249","DOIUrl":null,"url":null,"abstract":"Sensor data fusion in wireless sensor networks poses challenges with respect to both theory and implementation. Unknown cross-correlations between estimates distributed across the network need to be addressed carefully as neglecting them leads to overconfident fusion results. In addition, limited processing power and energy supply of the sensor nodes prohibit the use of complex algorithms and high-bandwidth communication. In this work, fast covariance intersection using both quantized estimates and quantized covariance matrices is considered. The proposed method is computationally efficient and significantly reduces the bandwidth required for data transmission while retaining unbiasedness and conservativeness of fast covariance intersection. The performance of the proposed method is evaluated with respect to that of fast covariance intersection, which proves its effectiveness even in the case of substantial data reduction.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Conservative Quantization of Fast Covariance Intersection\",\"authors\":\"Christopher Funk, B. Noack, U. Hanebeck\",\"doi\":\"10.1109/MFI49285.2020.9235249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensor data fusion in wireless sensor networks poses challenges with respect to both theory and implementation. Unknown cross-correlations between estimates distributed across the network need to be addressed carefully as neglecting them leads to overconfident fusion results. In addition, limited processing power and energy supply of the sensor nodes prohibit the use of complex algorithms and high-bandwidth communication. In this work, fast covariance intersection using both quantized estimates and quantized covariance matrices is considered. The proposed method is computationally efficient and significantly reduces the bandwidth required for data transmission while retaining unbiasedness and conservativeness of fast covariance intersection. The performance of the proposed method is evaluated with respect to that of fast covariance intersection, which proves its effectiveness even in the case of substantial data reduction.\",\"PeriodicalId\":446154,\"journal\":{\"name\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI49285.2020.9235249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conservative Quantization of Fast Covariance Intersection
Sensor data fusion in wireless sensor networks poses challenges with respect to both theory and implementation. Unknown cross-correlations between estimates distributed across the network need to be addressed carefully as neglecting them leads to overconfident fusion results. In addition, limited processing power and energy supply of the sensor nodes prohibit the use of complex algorithms and high-bandwidth communication. In this work, fast covariance intersection using both quantized estimates and quantized covariance matrices is considered. The proposed method is computationally efficient and significantly reduces the bandwidth required for data transmission while retaining unbiasedness and conservativeness of fast covariance intersection. The performance of the proposed method is evaluated with respect to that of fast covariance intersection, which proves its effectiveness even in the case of substantial data reduction.