用于野火空袭的遥控水陆两栖飞机概念优化

Ryan Ward, Brett Readman, Brennan O'Yeung, W. Hinman
{"title":"用于野火空袭的遥控水陆两栖飞机概念优化","authors":"Ryan Ward, Brett Readman, Brennan O'Yeung, W. Hinman","doi":"10.1139/dsa-2022-0051","DOIUrl":null,"url":null,"abstract":"In this study, a methodology for the high-level conceptual design, optimization, and evaluation of amphibious remotely piloted and autonomous fixed-wing aircraft to support wildfire air attack strategies is presented. Of particular interest are questions of scale, water source utilization, and optimization of high-level aircraft parameters in a regional context. The Canadian province of British Columbia is used as a case study due to the relevance of wildfire control in that region. The present strategy incorporates a detailed analysis of available water bodies, tanker base locations, and their distance from historical wildfire locations and explores how these regionally specific details impact optimal aircraft design parameters. Results are obtained for optimal lake size as well as the primary design characteristics of the corresponding optimal aircraft. Two filling strategies are evaluated, namely, a \"stop and go\" strategy and a traditional skimming strategy. The results indicate the potential of fleets of optimized aircraft to supply high flow rates while capitalizing on the established benefits of using remotely piloted and autonomous systems. It is hoped this work will encourage future study into improved models and the further development of drone technology for this application - including necessary beyond visual line of sight technology and infrastructure.","PeriodicalId":202289,"journal":{"name":"Drone Systems and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conceptual optimization of remotely piloted amphibious aircraft for wildfire air attack\",\"authors\":\"Ryan Ward, Brett Readman, Brennan O'Yeung, W. Hinman\",\"doi\":\"10.1139/dsa-2022-0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a methodology for the high-level conceptual design, optimization, and evaluation of amphibious remotely piloted and autonomous fixed-wing aircraft to support wildfire air attack strategies is presented. Of particular interest are questions of scale, water source utilization, and optimization of high-level aircraft parameters in a regional context. The Canadian province of British Columbia is used as a case study due to the relevance of wildfire control in that region. The present strategy incorporates a detailed analysis of available water bodies, tanker base locations, and their distance from historical wildfire locations and explores how these regionally specific details impact optimal aircraft design parameters. Results are obtained for optimal lake size as well as the primary design characteristics of the corresponding optimal aircraft. Two filling strategies are evaluated, namely, a \\\"stop and go\\\" strategy and a traditional skimming strategy. The results indicate the potential of fleets of optimized aircraft to supply high flow rates while capitalizing on the established benefits of using remotely piloted and autonomous systems. It is hoped this work will encourage future study into improved models and the further development of drone technology for this application - including necessary beyond visual line of sight technology and infrastructure.\",\"PeriodicalId\":202289,\"journal\":{\"name\":\"Drone Systems and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drone Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/dsa-2022-0051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drone Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/dsa-2022-0051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,提出了一种用于支持野火空袭战略的两栖遥控和自主固定翼飞机的高级概念设计、优化和评估方法。特别感兴趣的是规模问题,水源利用,并在区域范围内优化高层次的飞机参数。加拿大不列颠哥伦比亚省作为一个案例研究,因为该地区的野火控制具有相关性。目前的策略包含了对可用水体、油轮基地位置及其与历史野火地点的距离的详细分析,并探讨了这些区域特定细节如何影响最佳飞机设计参数。得到了最优湖泊尺寸以及相应最优飞机的主要设计特征。评估了两种填充策略,即“走走停停”策略和传统的略读策略。结果表明,优化后的飞机机队在利用远程驾驶和自主系统的既定优势的同时,具有提供高流量的潜力。希望这项工作将鼓励未来对改进模型的研究和无人机技术的进一步发展,包括必要的超视距技术和基础设施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conceptual optimization of remotely piloted amphibious aircraft for wildfire air attack
In this study, a methodology for the high-level conceptual design, optimization, and evaluation of amphibious remotely piloted and autonomous fixed-wing aircraft to support wildfire air attack strategies is presented. Of particular interest are questions of scale, water source utilization, and optimization of high-level aircraft parameters in a regional context. The Canadian province of British Columbia is used as a case study due to the relevance of wildfire control in that region. The present strategy incorporates a detailed analysis of available water bodies, tanker base locations, and their distance from historical wildfire locations and explores how these regionally specific details impact optimal aircraft design parameters. Results are obtained for optimal lake size as well as the primary design characteristics of the corresponding optimal aircraft. Two filling strategies are evaluated, namely, a "stop and go" strategy and a traditional skimming strategy. The results indicate the potential of fleets of optimized aircraft to supply high flow rates while capitalizing on the established benefits of using remotely piloted and autonomous systems. It is hoped this work will encourage future study into improved models and the further development of drone technology for this application - including necessary beyond visual line of sight technology and infrastructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Capacity modelling for UAM Smart Data Harvesting in Cache-Enabled MANETs: UAVs, Future Position Prediction, and Autonomous Path Planning U-SMART: Unified Swarm Management and Resource Tracking Framework for Unoccupied Aerial Vehicles Swarm of Drones for Surveillance Monitoring of a Grounded Target: An event-triggered approach Three-Dimensional Path Planning and Collision-Free Flight Control for Drone-Assisted Autonomous Pollination Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1