以二甲醚替代液化石油气作为家庭燃料,实现印尼的可持续能源安全

Natasya Lim, Vincent Felixius, Timotius Weslie
{"title":"以二甲醚替代液化石油气作为家庭燃料,实现印尼的可持续能源安全","authors":"Natasya Lim, Vincent Felixius, Timotius Weslie","doi":"10.33116/ije.v4i2.100","DOIUrl":null,"url":null,"abstract":"Indonesia has been facing an energy security issue regarding Liquefied Petroleum Gas (LPG) consumption. The rapid increase of LPG consumption and huge import have driven the Indonesian government to develop the alternative for LPG in the household sector. Dimethyl ether (DME) is the well-fit candidate to substitute LPG because of its properties similarities. However, discrepancies in the properties, such as combustion enthalpy and corrosivity, lead to adjustments in the application. Coal is a potential raw material to produce DME, especially in Indonesia, known as the fourth-largest coal producer globally. However, the gasification of coal into DME  brings a problem in its sustainability. To compensate for the emission, co-processing of DME with biomass, especially from agricultural residue, has been discovered. Recently, carbon dioxide (CO2) captured from the gasification process has also been developed as the raw material to produce DME. The utilization of CO2 recycling into DME consists of two approaches, methanol synthesis and dehydration reactions (indirect synthesis) and direct hydrogenation of CO2 to DME (direct synthesis). The reactions are supported by the catalytic activity that strongly depends on the metal dispersion, use of dopants and the support choice. Direct synthesis can increase the efficiency of catalysts used for both methanol synthesis and dehydration. This paper intended to summarize the recent advancements in sustainable DME processing. Moreover, an analysis of DME's impact and feasibility in Indonesia was conducted based on the resources, processes, environmental and economic aspects. \n  \nKeywords: coal gasification, DME, energy security, LPG, sustainable","PeriodicalId":119876,"journal":{"name":"Indonesian Journal of Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Achieving Sustainable Energy Security in Indonesia Through Substitution of Liquefied Petroleum Gas with Dimethyl Ether as Household Fuel\",\"authors\":\"Natasya Lim, Vincent Felixius, Timotius Weslie\",\"doi\":\"10.33116/ije.v4i2.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indonesia has been facing an energy security issue regarding Liquefied Petroleum Gas (LPG) consumption. The rapid increase of LPG consumption and huge import have driven the Indonesian government to develop the alternative for LPG in the household sector. Dimethyl ether (DME) is the well-fit candidate to substitute LPG because of its properties similarities. However, discrepancies in the properties, such as combustion enthalpy and corrosivity, lead to adjustments in the application. Coal is a potential raw material to produce DME, especially in Indonesia, known as the fourth-largest coal producer globally. However, the gasification of coal into DME  brings a problem in its sustainability. To compensate for the emission, co-processing of DME with biomass, especially from agricultural residue, has been discovered. Recently, carbon dioxide (CO2) captured from the gasification process has also been developed as the raw material to produce DME. The utilization of CO2 recycling into DME consists of two approaches, methanol synthesis and dehydration reactions (indirect synthesis) and direct hydrogenation of CO2 to DME (direct synthesis). The reactions are supported by the catalytic activity that strongly depends on the metal dispersion, use of dopants and the support choice. Direct synthesis can increase the efficiency of catalysts used for both methanol synthesis and dehydration. This paper intended to summarize the recent advancements in sustainable DME processing. Moreover, an analysis of DME's impact and feasibility in Indonesia was conducted based on the resources, processes, environmental and economic aspects. \\n  \\nKeywords: coal gasification, DME, energy security, LPG, sustainable\",\"PeriodicalId\":119876,\"journal\":{\"name\":\"Indonesian Journal of Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33116/ije.v4i2.100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33116/ije.v4i2.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

印尼一直面临着关于液化石油气(LPG)消费的能源安全问题。液化石油气消费的快速增长和巨大的进口促使印尼政府在家庭部门开发液化石油气的替代品。二甲醚(DME)由于其性质相似,是替代液化石油气的理想选择。然而,性能的差异,如燃烧焓和腐蚀性,导致在应用中进行调整。煤炭是生产二甲醚的潜在原料,尤其是在被称为全球第四大煤炭生产国的印度尼西亚。然而,煤气化二甲醚带来了可持续性问题。为了补偿二甲醚的排放,人们发现了二甲醚与生物质,特别是农业残留物的协同加工。最近,从气化过程中捕获的二氧化碳(CO2)也被开发为生产二甲醚的原料。利用CO2回收二甲醚可分为甲醇合成脱水反应(间接合成)和CO2直接加氢制二甲醚(直接合成)两种途径。催化活性对反应的支持很大程度上取决于金属的分散、掺杂剂的使用和载体的选择。直接合成可以提高甲醇合成和脱水所用催化剂的效率。本文综述了二甲醚可持续加工的最新进展。此外,还根据资源、工艺、环境和经济方面对二甲醚在印度尼西亚的影响和可行性进行了分析。关键词:煤气化;二甲醚;能源安全
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Achieving Sustainable Energy Security in Indonesia Through Substitution of Liquefied Petroleum Gas with Dimethyl Ether as Household Fuel
Indonesia has been facing an energy security issue regarding Liquefied Petroleum Gas (LPG) consumption. The rapid increase of LPG consumption and huge import have driven the Indonesian government to develop the alternative for LPG in the household sector. Dimethyl ether (DME) is the well-fit candidate to substitute LPG because of its properties similarities. However, discrepancies in the properties, such as combustion enthalpy and corrosivity, lead to adjustments in the application. Coal is a potential raw material to produce DME, especially in Indonesia, known as the fourth-largest coal producer globally. However, the gasification of coal into DME  brings a problem in its sustainability. To compensate for the emission, co-processing of DME with biomass, especially from agricultural residue, has been discovered. Recently, carbon dioxide (CO2) captured from the gasification process has also been developed as the raw material to produce DME. The utilization of CO2 recycling into DME consists of two approaches, methanol synthesis and dehydration reactions (indirect synthesis) and direct hydrogenation of CO2 to DME (direct synthesis). The reactions are supported by the catalytic activity that strongly depends on the metal dispersion, use of dopants and the support choice. Direct synthesis can increase the efficiency of catalysts used for both methanol synthesis and dehydration. This paper intended to summarize the recent advancements in sustainable DME processing. Moreover, an analysis of DME's impact and feasibility in Indonesia was conducted based on the resources, processes, environmental and economic aspects.   Keywords: coal gasification, DME, energy security, LPG, sustainable
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Solar Enhanced Oil Recovery as the Solution to Enhance Oil and Gas Production for Mature Fields in Indonesia Geospatial Visualization for Second-Generation Renewable Diesel Feedstock from Palm Oil Value Chain Application of Carbon Capture and Utilization (CCU) in Oil and Gas Industry to Produce Microalgae-Based Biofuels with Solvent-Captured Method Evolving Well Stimulation Optimization Tool with OliFANT China’s Energy Diplomacy to Coal Imports from Indonesia After Restricting Coal Import from Australia in 2019
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1