使用机器学习模型的副语言和记忆测试特征预测痴呆风险

Yilun You, Beena Ahmed, Polly Barr, K. Ballard, M. Valenzuela
{"title":"使用机器学习模型的副语言和记忆测试特征预测痴呆风险","authors":"Yilun You, Beena Ahmed, Polly Barr, K. Ballard, M. Valenzuela","doi":"10.1109/HI-POCT45284.2019.8962887","DOIUrl":null,"url":null,"abstract":"Cognitive reserve exposures are a major class of dementia risk predictors, but a biomarker has proven elusive. Here, we show that paralinguistic features extracted from audio recordings of older participants completing the LOGOS episodic memory test can be used to identify participants with high and low estimable cognitive reserve, and hence low and high dementia risk, respectively. We present a parallel classification system consisting of an ensemble of a k-NN model and SVM model that discriminates between participants at high risk and low risk of dementia with an accuracy of 94.7% when trained with paralinguistic features only and 97.2% when trained with paralinguistic and episodic memory features.","PeriodicalId":269346,"journal":{"name":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","volume":"494 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Predicting Dementia Risk Using Paralinguistic and Memory Test Features with Machine Learning Models\",\"authors\":\"Yilun You, Beena Ahmed, Polly Barr, K. Ballard, M. Valenzuela\",\"doi\":\"10.1109/HI-POCT45284.2019.8962887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive reserve exposures are a major class of dementia risk predictors, but a biomarker has proven elusive. Here, we show that paralinguistic features extracted from audio recordings of older participants completing the LOGOS episodic memory test can be used to identify participants with high and low estimable cognitive reserve, and hence low and high dementia risk, respectively. We present a parallel classification system consisting of an ensemble of a k-NN model and SVM model that discriminates between participants at high risk and low risk of dementia with an accuracy of 94.7% when trained with paralinguistic features only and 97.2% when trained with paralinguistic and episodic memory features.\",\"PeriodicalId\":269346,\"journal\":{\"name\":\"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)\",\"volume\":\"494 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HI-POCT45284.2019.8962887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HI-POCT45284.2019.8962887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

认知储备暴露是痴呆症风险预测的主要类别,但生物标志物已被证明是难以捉摸的。在这里,我们发现从完成LOGOS情景记忆测试的老年参与者的录音中提取的副语言特征可以用来识别具有高和低可估计认知储备的参与者,从而分别具有低和高痴呆风险。我们提出了一个由k-NN模型和SVM模型组成的并行分类系统,该系统可以区分高风险和低风险的痴呆参与者,当仅使用副语言特征训练时,准确率为94.7%,当使用副语言和情景记忆特征训练时,准确率为97.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Dementia Risk Using Paralinguistic and Memory Test Features with Machine Learning Models
Cognitive reserve exposures are a major class of dementia risk predictors, but a biomarker has proven elusive. Here, we show that paralinguistic features extracted from audio recordings of older participants completing the LOGOS episodic memory test can be used to identify participants with high and low estimable cognitive reserve, and hence low and high dementia risk, respectively. We present a parallel classification system consisting of an ensemble of a k-NN model and SVM model that discriminates between participants at high risk and low risk of dementia with an accuracy of 94.7% when trained with paralinguistic features only and 97.2% when trained with paralinguistic and episodic memory features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Nanoscale Electrode for Biosensing A Motion Free Image Based TRF Reader for Quantitative Immunoassay Gaze-based video games for assessment of attention outside of the lab Conjugated Barcoded Particles for Multiplexed Biomarker Quantification with a Microfluidic Biochip Daily Locomotor Movement Recognition with a Smart Insole and a Pre-defined Route Map: Towards Early Motor Dysfunction Detection*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1