{"title":"用三种方法预测酶蛋白β-发夹基序","authors":"Haixia Long, Xiuzhen Hu","doi":"10.1109/ICNC.2012.6234521","DOIUrl":null,"url":null,"abstract":"The authors use three methods, including matrix scoring algorithm, increment of diversity algorithm and Random Forest algorithm. They are used to predict β-hairpin motifs in the ArchDB-EC and ArchDB40 dataset. In the ArchDB-EC dataset, we obtain the accuracy of 68.5%, 79.8% and 84.3%, respectively. Matthew's correlation coefficient are 0.17, 0.61 and 0.63, respectively. Using same three methods in the ArchDB40 dataset, we obtain the accuracy and Matthew's correlation coefficient of 67.9% and 0.39, 75.2% and 0.51, 83.5% and 0.60, respectively. Experiments show that Random Forest algorithm for predicting β-hairpin motifs is best and the predictive results in ArchDB40 dataset are better than previous results.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Prediction β-hairpin motifs in enzyme protein using three methods\",\"authors\":\"Haixia Long, Xiuzhen Hu\",\"doi\":\"10.1109/ICNC.2012.6234521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors use three methods, including matrix scoring algorithm, increment of diversity algorithm and Random Forest algorithm. They are used to predict β-hairpin motifs in the ArchDB-EC and ArchDB40 dataset. In the ArchDB-EC dataset, we obtain the accuracy of 68.5%, 79.8% and 84.3%, respectively. Matthew's correlation coefficient are 0.17, 0.61 and 0.63, respectively. Using same three methods in the ArchDB40 dataset, we obtain the accuracy and Matthew's correlation coefficient of 67.9% and 0.39, 75.2% and 0.51, 83.5% and 0.60, respectively. Experiments show that Random Forest algorithm for predicting β-hairpin motifs is best and the predictive results in ArchDB40 dataset are better than previous results.\",\"PeriodicalId\":404981,\"journal\":{\"name\":\"2012 8th International Conference on Natural Computation\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction β-hairpin motifs in enzyme protein using three methods
The authors use three methods, including matrix scoring algorithm, increment of diversity algorithm and Random Forest algorithm. They are used to predict β-hairpin motifs in the ArchDB-EC and ArchDB40 dataset. In the ArchDB-EC dataset, we obtain the accuracy of 68.5%, 79.8% and 84.3%, respectively. Matthew's correlation coefficient are 0.17, 0.61 and 0.63, respectively. Using same three methods in the ArchDB40 dataset, we obtain the accuracy and Matthew's correlation coefficient of 67.9% and 0.39, 75.2% and 0.51, 83.5% and 0.60, respectively. Experiments show that Random Forest algorithm for predicting β-hairpin motifs is best and the predictive results in ArchDB40 dataset are better than previous results.