{"title":"通用缓存网络的近似模型","authors":"Elisha J. Rosensweig, J. Kurose, D. Towsley","doi":"10.1109/INFCOM.2010.5461936","DOIUrl":null,"url":null,"abstract":"Many systems employ caches to improve performance. While isolated caches have been studied in-depth, multi-cache systems are not well understood, especially in networks with arbitrary topologies. In order to gain insight into and manage these systems, a low-complexity algorithm for approximating their behavior is required. We propose a new algorithm, termed a-Net, that approximates the behavior of multi-cache networks by leveraging existing approximation algorithms for isolated LRU caches. We demonstrate the utility of a-Net using both per- cache and network-wide performance measures. We also perform factor analysis of the approximation error to identify system parameters that determine the precision of a-Net.","PeriodicalId":259639,"journal":{"name":"2010 Proceedings IEEE INFOCOM","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"221","resultStr":"{\"title\":\"Approximate Models for General Cache Networks\",\"authors\":\"Elisha J. Rosensweig, J. Kurose, D. Towsley\",\"doi\":\"10.1109/INFCOM.2010.5461936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many systems employ caches to improve performance. While isolated caches have been studied in-depth, multi-cache systems are not well understood, especially in networks with arbitrary topologies. In order to gain insight into and manage these systems, a low-complexity algorithm for approximating their behavior is required. We propose a new algorithm, termed a-Net, that approximates the behavior of multi-cache networks by leveraging existing approximation algorithms for isolated LRU caches. We demonstrate the utility of a-Net using both per- cache and network-wide performance measures. We also perform factor analysis of the approximation error to identify system parameters that determine the precision of a-Net.\",\"PeriodicalId\":259639,\"journal\":{\"name\":\"2010 Proceedings IEEE INFOCOM\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"221\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Proceedings IEEE INFOCOM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOM.2010.5461936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Proceedings IEEE INFOCOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2010.5461936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Many systems employ caches to improve performance. While isolated caches have been studied in-depth, multi-cache systems are not well understood, especially in networks with arbitrary topologies. In order to gain insight into and manage these systems, a low-complexity algorithm for approximating their behavior is required. We propose a new algorithm, termed a-Net, that approximates the behavior of multi-cache networks by leveraging existing approximation algorithms for isolated LRU caches. We demonstrate the utility of a-Net using both per- cache and network-wide performance measures. We also perform factor analysis of the approximation error to identify system parameters that determine the precision of a-Net.