{"title":"基于ALO的FPI控制器在两区互联火电系统负荷频率控制中的应用","authors":"Nimai Charan Patel, Karisma Mohanty, Bhabatosh Giri, Subash Kumar Ekka","doi":"10.1109/ICICCSP53532.2022.9862031","DOIUrl":null,"url":null,"abstract":"Load frequency control (LFC) has a major role in power system for maintaining the system stability against load variations on the system. This paper enlightens applications of proportional integral derivative (PID) controller independently tuned by particle swarm optimisation (PSO) and ant lion optimiser (ALO) as well as fuzzy logic based PI (FPI) controller tuned by ALO to address the LFC issues in a 2 area hydro thermal power system (2-AHTPS). Control performance of these controllers are examined and contrasted by putting a step load perturbation (SLP) of 1% in the area 1. It is witnessed that ALO is more effective than PSO in tuning the controller parameters and thus ALO-PID controller provides better quality result than the PSO-PID controller. To enhance the dynamic response of the system, FPI controller tuned by ALO is applied to the same system with same load disturbance and it is found that the ALO-FPI controller delivers best performance amongst all the controllers.","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Load Frequency Control in Two Area Interconnected Hydro-thermal Power System Utilizing ALO Based FPI Controller\",\"authors\":\"Nimai Charan Patel, Karisma Mohanty, Bhabatosh Giri, Subash Kumar Ekka\",\"doi\":\"10.1109/ICICCSP53532.2022.9862031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Load frequency control (LFC) has a major role in power system for maintaining the system stability against load variations on the system. This paper enlightens applications of proportional integral derivative (PID) controller independently tuned by particle swarm optimisation (PSO) and ant lion optimiser (ALO) as well as fuzzy logic based PI (FPI) controller tuned by ALO to address the LFC issues in a 2 area hydro thermal power system (2-AHTPS). Control performance of these controllers are examined and contrasted by putting a step load perturbation (SLP) of 1% in the area 1. It is witnessed that ALO is more effective than PSO in tuning the controller parameters and thus ALO-PID controller provides better quality result than the PSO-PID controller. To enhance the dynamic response of the system, FPI controller tuned by ALO is applied to the same system with same load disturbance and it is found that the ALO-FPI controller delivers best performance amongst all the controllers.\",\"PeriodicalId\":326163,\"journal\":{\"name\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"volume\":\"215 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICCSP53532.2022.9862031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Load Frequency Control in Two Area Interconnected Hydro-thermal Power System Utilizing ALO Based FPI Controller
Load frequency control (LFC) has a major role in power system for maintaining the system stability against load variations on the system. This paper enlightens applications of proportional integral derivative (PID) controller independently tuned by particle swarm optimisation (PSO) and ant lion optimiser (ALO) as well as fuzzy logic based PI (FPI) controller tuned by ALO to address the LFC issues in a 2 area hydro thermal power system (2-AHTPS). Control performance of these controllers are examined and contrasted by putting a step load perturbation (SLP) of 1% in the area 1. It is witnessed that ALO is more effective than PSO in tuning the controller parameters and thus ALO-PID controller provides better quality result than the PSO-PID controller. To enhance the dynamic response of the system, FPI controller tuned by ALO is applied to the same system with same load disturbance and it is found that the ALO-FPI controller delivers best performance amongst all the controllers.