支持100个GPU通道的x86-64地址转换

Jason Power, M. Hill, D. Wood
{"title":"支持100个GPU通道的x86-64地址转换","authors":"Jason Power, M. Hill, D. Wood","doi":"10.1109/HPCA.2014.6835965","DOIUrl":null,"url":null,"abstract":"Efficient memory sharing between CPU and GPU threads can greatly expand the effective set of GPGPU workloads. For increased programmability, this memory should be uniformly virtualized, necessitating compatible address translation support for GPU memory references. However, even a modest GPU might need 100s of translations per cycle (6 CUs * 64 lanes/CU) with memory access patterns designed for throughput more than locality. To drive GPU MMU design, we examine GPU memory reference behavior with the Rodinia benchmarks and a database sort to find: (1) the coalescer and scratchpad memory are effective TLB bandwidth filters (reducing the translation rate by 6.8x on average), (2) TLB misses occur in bursts (60 concurrently on average), and (3) postcoalescer TLBs have high miss rates (29% average). We show how a judicious combination of extant CPU MMU ideas satisfies GPU MMU demands for 4 KB pages with minimal overheads (an average of less than 2% over ideal address translation). This proof-of-concept design uses per-compute unit TLBs, a shared highly-threaded page table walker, and a shared page walk cache.","PeriodicalId":164587,"journal":{"name":"2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"148","resultStr":"{\"title\":\"Supporting x86-64 address translation for 100s of GPU lanes\",\"authors\":\"Jason Power, M. Hill, D. Wood\",\"doi\":\"10.1109/HPCA.2014.6835965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient memory sharing between CPU and GPU threads can greatly expand the effective set of GPGPU workloads. For increased programmability, this memory should be uniformly virtualized, necessitating compatible address translation support for GPU memory references. However, even a modest GPU might need 100s of translations per cycle (6 CUs * 64 lanes/CU) with memory access patterns designed for throughput more than locality. To drive GPU MMU design, we examine GPU memory reference behavior with the Rodinia benchmarks and a database sort to find: (1) the coalescer and scratchpad memory are effective TLB bandwidth filters (reducing the translation rate by 6.8x on average), (2) TLB misses occur in bursts (60 concurrently on average), and (3) postcoalescer TLBs have high miss rates (29% average). We show how a judicious combination of extant CPU MMU ideas satisfies GPU MMU demands for 4 KB pages with minimal overheads (an average of less than 2% over ideal address translation). This proof-of-concept design uses per-compute unit TLBs, a shared highly-threaded page table walker, and a shared page walk cache.\",\"PeriodicalId\":164587,\"journal\":{\"name\":\"2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"148\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2014.6835965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2014.6835965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 148

摘要

CPU和GPU线程之间高效的内存共享可以极大地扩展GPGPU工作负载的有效集合。为了提高可编程性,该内存应该统一虚拟化,这就需要为GPU内存引用提供兼容的地址转换支持。然而,即使是一个普通的GPU,每个周期也可能需要100次转换(6 CU * 64 lane /CU),并且内存访问模式是为吞吐量而不是局域性设计的。为了驱动GPU MMU设计,我们使用Rodinia基准测试和数据库分类检查GPU内存参考行为,发现:(1)聚结器和刮刮板内存是有效的TLB带宽过滤器(平均降低6.8倍的转译率),(2)TLB丢失发生在突发(平均并发60次)中,(3)聚结器后TLB具有高丢失率(平均29%)。我们展示了现有CPU MMU思想的明智组合如何以最小的开销(比理想地址转换平均不到2%)满足GPU MMU对4 KB页面的需求。这种概念验证设计使用每个计算单元tlb、共享高线程页表漫游器和共享页漫游缓存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supporting x86-64 address translation for 100s of GPU lanes
Efficient memory sharing between CPU and GPU threads can greatly expand the effective set of GPGPU workloads. For increased programmability, this memory should be uniformly virtualized, necessitating compatible address translation support for GPU memory references. However, even a modest GPU might need 100s of translations per cycle (6 CUs * 64 lanes/CU) with memory access patterns designed for throughput more than locality. To drive GPU MMU design, we examine GPU memory reference behavior with the Rodinia benchmarks and a database sort to find: (1) the coalescer and scratchpad memory are effective TLB bandwidth filters (reducing the translation rate by 6.8x on average), (2) TLB misses occur in bursts (60 concurrently on average), and (3) postcoalescer TLBs have high miss rates (29% average). We show how a judicious combination of extant CPU MMU ideas satisfies GPU MMU demands for 4 KB pages with minimal overheads (an average of less than 2% over ideal address translation). This proof-of-concept design uses per-compute unit TLBs, a shared highly-threaded page table walker, and a shared page walk cache.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-aware soft error protection for GPUs Low-overhead and high coverage run-time race detection through selective meta-data management Improving DRAM performance by parallelizing refreshes with accesses Improving GPGPU resource utilization through alternative thread block scheduling DraMon: Predicting memory bandwidth usage of multi-threaded programs with high accuracy and low overhead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1