随机几何图邻接矩阵的谱分析

Mounia Hamidouche, L. Cottatellucci, Konstantin Avrachenkov
{"title":"随机几何图邻接矩阵的谱分析","authors":"Mounia Hamidouche, L. Cottatellucci, Konstantin Avrachenkov","doi":"10.1109/ALLERTON.2019.8919798","DOIUrl":null,"url":null,"abstract":"In this article, we analyze the limiting eigen-value distribution (LED) of random geometric graphs (RGGs). The RGG is constructed by uniformly distributing n nodes on the d-dimensional torus $\\Gamma^{d}\\equiv [0, 1]^{d}$ and connecting two nodes if their $\\ell_{p}$-distance, $ p\\in [1,\\ \\infty]$ is at most rn. In particular, we study the LED of the adjacency matrix of RGGs in the connectivity regime, in which the average vertex degree scales as $\\log(n)$ or faster, i.e., $\\Omega(\\log(n))$. In the connectivity regime and under some conditions on the radius rn, we show that the LED of the adjacency matrix of RGGs converges to the LED of the adjacency matrix of a deterministic geometric graph (DGG) with nodes in a grid as n goes to infinity. Then, for n finite, we use the structure of the DGG to approximate the eigenvalues of the adjacency matrix of the RGG and provide an upper bound for the approximation error. Index Terms--Random geometric graphs, adjacency matrix, limiting eigenvalue distribution, Levy distance.","PeriodicalId":120479,"journal":{"name":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Spectral Analysis of the Adjacency Matrix of Random Geometric Graphs\",\"authors\":\"Mounia Hamidouche, L. Cottatellucci, Konstantin Avrachenkov\",\"doi\":\"10.1109/ALLERTON.2019.8919798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we analyze the limiting eigen-value distribution (LED) of random geometric graphs (RGGs). The RGG is constructed by uniformly distributing n nodes on the d-dimensional torus $\\\\Gamma^{d}\\\\equiv [0, 1]^{d}$ and connecting two nodes if their $\\\\ell_{p}$-distance, $ p\\\\in [1,\\\\ \\\\infty]$ is at most rn. In particular, we study the LED of the adjacency matrix of RGGs in the connectivity regime, in which the average vertex degree scales as $\\\\log(n)$ or faster, i.e., $\\\\Omega(\\\\log(n))$. In the connectivity regime and under some conditions on the radius rn, we show that the LED of the adjacency matrix of RGGs converges to the LED of the adjacency matrix of a deterministic geometric graph (DGG) with nodes in a grid as n goes to infinity. Then, for n finite, we use the structure of the DGG to approximate the eigenvalues of the adjacency matrix of the RGG and provide an upper bound for the approximation error. Index Terms--Random geometric graphs, adjacency matrix, limiting eigenvalue distribution, Levy distance.\",\"PeriodicalId\":120479,\"journal\":{\"name\":\"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2019.8919798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2019.8919798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文分析了随机几何图的极限特征值分布(LED)。RGG的构造方法是在d维环面$\Gamma^{d}\equiv [0, 1]^{d}$上均匀分布n个节点,如果两个节点的$\ell_{p}$ -distance, $ p\in [1,\ \infty]$不超过rn,则将它们连接起来。特别地,我们研究了RGGs的邻接矩阵的LED,其中平均顶点度的尺度为$\log(n)$或更快,即$\Omega(\log(n))$。在连通性区域和半径为rn的某些条件下,我们证明了当n趋于无穷时,RGGs邻接矩阵的LED收敛于网格中有节点的确定性几何图(DGG)邻接矩阵的LED。然后,对于n有限,我们使用DGG的结构来近似RGG邻接矩阵的特征值,并提供近似误差的上界。索引项——随机几何图,邻接矩阵,极限特征值分布,列维距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectral Analysis of the Adjacency Matrix of Random Geometric Graphs
In this article, we analyze the limiting eigen-value distribution (LED) of random geometric graphs (RGGs). The RGG is constructed by uniformly distributing n nodes on the d-dimensional torus $\Gamma^{d}\equiv [0, 1]^{d}$ and connecting two nodes if their $\ell_{p}$-distance, $ p\in [1,\ \infty]$ is at most rn. In particular, we study the LED of the adjacency matrix of RGGs in the connectivity regime, in which the average vertex degree scales as $\log(n)$ or faster, i.e., $\Omega(\log(n))$. In the connectivity regime and under some conditions on the radius rn, we show that the LED of the adjacency matrix of RGGs converges to the LED of the adjacency matrix of a deterministic geometric graph (DGG) with nodes in a grid as n goes to infinity. Then, for n finite, we use the structure of the DGG to approximate the eigenvalues of the adjacency matrix of the RGG and provide an upper bound for the approximation error. Index Terms--Random geometric graphs, adjacency matrix, limiting eigenvalue distribution, Levy distance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Sequential Gradient-Based Multiple Access for Distributed Learning over Fading Channels Scheduling Policies for Minimizing Job Migration and Server Running Costs for Cloud Computing Platforms Explicit Low-complexity Codes for Multiple Access Channel Resolvability Byzantine Fault-Tolerant Parallelized Stochastic Gradient Descent for Linear Regression Deep Reinforcement Learning Based Power Control for Wireless Multicast Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1