利用深度神经网络预测周围车辆的位置和速度

Velibor Ilic, Dragan D. Kukolj, M. Marijan, N. Teslic
{"title":"利用深度神经网络预测周围车辆的位置和速度","authors":"Velibor Ilic, Dragan D. Kukolj, M. Marijan, N. Teslic","doi":"10.1109/ZINC.2019.8769429","DOIUrl":null,"url":null,"abstract":"Prediction of surrounding vehicles motion is a basic feature of the most advanced driver assistance systems (ADAS). In this paper, we present prediction of positions and velocities of surrounding vehicles using deep neural networks (DNNs). Three different DNN architectures are designed and explored: feed-forward, recurrent, and hybrid. Training and validation data are generated using IPG Carmaker simulation environment. The reliability and accuracy of prediction models under simulated highway conditions and variable number of input-output time steps have been examined. Hybrid DNN showed better performance compared to feed-forward and recurrent neural networks.","PeriodicalId":190326,"journal":{"name":"2019 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting Positions and Velocities of Surrounding Vehicles using Deep Neural Networks\",\"authors\":\"Velibor Ilic, Dragan D. Kukolj, M. Marijan, N. Teslic\",\"doi\":\"10.1109/ZINC.2019.8769429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of surrounding vehicles motion is a basic feature of the most advanced driver assistance systems (ADAS). In this paper, we present prediction of positions and velocities of surrounding vehicles using deep neural networks (DNNs). Three different DNN architectures are designed and explored: feed-forward, recurrent, and hybrid. Training and validation data are generated using IPG Carmaker simulation environment. The reliability and accuracy of prediction models under simulated highway conditions and variable number of input-output time steps have been examined. Hybrid DNN showed better performance compared to feed-forward and recurrent neural networks.\",\"PeriodicalId\":190326,\"journal\":{\"name\":\"2019 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ZINC.2019.8769429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC.2019.8769429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

预测周围车辆的运动是最先进的驾驶辅助系统(ADAS)的基本特征。在本文中,我们提出了使用深度神经网络(dnn)预测周围车辆的位置和速度。设计和探索了三种不同的深度神经网络架构:前馈、循环和混合。使用IPG汽车制造商仿真环境生成训练和验证数据。在模拟公路条件和可变输入输出时间步长的情况下,对预测模型的可靠性和准确性进行了检验。与前馈和递归神经网络相比,混合深度神经网络表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Positions and Velocities of Surrounding Vehicles using Deep Neural Networks
Prediction of surrounding vehicles motion is a basic feature of the most advanced driver assistance systems (ADAS). In this paper, we present prediction of positions and velocities of surrounding vehicles using deep neural networks (DNNs). Three different DNN architectures are designed and explored: feed-forward, recurrent, and hybrid. Training and validation data are generated using IPG Carmaker simulation environment. The reliability and accuracy of prediction models under simulated highway conditions and variable number of input-output time steps have been examined. Hybrid DNN showed better performance compared to feed-forward and recurrent neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software solution stack for data transfer on a frame grabber platform Classification of Objects Detected by the Camera based on Convolutional Neural Network Design and development of a smart attendance management system with Bluetooth low energy beacons Automotive Vision Grabber: FPGA design, cameras and data transfer over PCIe Object detection and object tracking in front of the vehicle using front view camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1