一种新的WordNet语义相似度信息内容模型

Zili Zhou, Yanna Wang, Junzhong Gu
{"title":"一种新的WordNet语义相似度信息内容模型","authors":"Zili Zhou, Yanna Wang, Junzhong Gu","doi":"10.1109/FGCNS.2008.16","DOIUrl":null,"url":null,"abstract":"Information Content (IC) is an important dimension of assessing the semantic similarity between two terms or word senses in word knowledge. The conventional method of obtaining IC of word senses is to combine knowledge of their hierarchical structure from an ontology like WordNet with actual usage in text as derived from a large corpus. In this paper, a new model of IC is presented, which relies on hierarchical structure alone. The model considers not only the hyponyms of each word sense but also its depth in the structure. The IC value is easier to calculate based on our model, and when used as the basis of a similarity approach it yields judgments that correlate more closely with human assessments than others, which using IC value obtained only considering the hyponyms and IC value got by employing corpus analysis.","PeriodicalId":370780,"journal":{"name":"2008 Second International Conference on Future Generation Communication and Networking Symposia","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"146","resultStr":"{\"title\":\"A New Model of Information Content for Semantic Similarity in WordNet\",\"authors\":\"Zili Zhou, Yanna Wang, Junzhong Gu\",\"doi\":\"10.1109/FGCNS.2008.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information Content (IC) is an important dimension of assessing the semantic similarity between two terms or word senses in word knowledge. The conventional method of obtaining IC of word senses is to combine knowledge of their hierarchical structure from an ontology like WordNet with actual usage in text as derived from a large corpus. In this paper, a new model of IC is presented, which relies on hierarchical structure alone. The model considers not only the hyponyms of each word sense but also its depth in the structure. The IC value is easier to calculate based on our model, and when used as the basis of a similarity approach it yields judgments that correlate more closely with human assessments than others, which using IC value obtained only considering the hyponyms and IC value got by employing corpus analysis.\",\"PeriodicalId\":370780,\"journal\":{\"name\":\"2008 Second International Conference on Future Generation Communication and Networking Symposia\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"146\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second International Conference on Future Generation Communication and Networking Symposia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGCNS.2008.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Future Generation Communication and Networking Symposia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGCNS.2008.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 146

摘要

信息内容(Information Content, IC)是词汇知识中衡量两个词或词义之间语义相似度的一个重要维度。获取词义集成的传统方法是将来自WordNet等本体的语义层次结构知识与来自大型语料库的文本实际用法相结合。本文提出了一种新的集成电路模型,该模型仅依赖于层次结构。该模型不仅考虑了每个词义的下位词,而且考虑了其在结构中的深度。基于我们的模型,IC值更容易计算,并且当作为相似度方法的基础时,它产生的判断与人类评估的相关性更紧密,而不是使用仅考虑下义词和通过语料库分析获得的IC值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Model of Information Content for Semantic Similarity in WordNet
Information Content (IC) is an important dimension of assessing the semantic similarity between two terms or word senses in word knowledge. The conventional method of obtaining IC of word senses is to combine knowledge of their hierarchical structure from an ontology like WordNet with actual usage in text as derived from a large corpus. In this paper, a new model of IC is presented, which relies on hierarchical structure alone. The model considers not only the hyponyms of each word sense but also its depth in the structure. The IC value is easier to calculate based on our model, and when used as the basis of a similarity approach it yields judgments that correlate more closely with human assessments than others, which using IC value obtained only considering the hyponyms and IC value got by employing corpus analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach to Event Recognition for Visual Surveillance Systems Lossless Information Hiding Scheme Based on Neighboring Correlation HSV Color Space and Face Detection Based Objectionable Image Detecting User Interface Concurrency in Web Service Client Systems Visuo-Motor Coordination in Bipedal Humanoid Robot Walking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1