智能故障监控系统在单机光伏系统中的应用

N. Sabri, A. Tlemçani, A. Chouder
{"title":"智能故障监控系统在单机光伏系统中的应用","authors":"N. Sabri, A. Tlemçani, A. Chouder","doi":"10.1109/ICASS.2018.8651950","DOIUrl":null,"url":null,"abstract":"Fault supervision in stand-alone photovoltaic system is one of the most important task to increase the reliability, efficiencies and safety. This paper proposes a fault detection and identification of a stand-alone photovoltaic system based on feed forward Artificial Neural Network (ANN). The input network consist simply of current and voltage for PV, Battery and load. Two consequent ANN are developed respectively, for detection and diagnosis using a real data issued from experimental stand-alone photovoltaic system installed at LREA in the University of Médéa, Algeria. The results show a high rate of good classification for both detection and diagnosis network, which reveals the effectiveness of the proposed method.","PeriodicalId":358814,"journal":{"name":"2018 International Conference on Applied Smart Systems (ICASS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Intelligent fault supervisory system applied on stand-alone photovoltaic system\",\"authors\":\"N. Sabri, A. Tlemçani, A. Chouder\",\"doi\":\"10.1109/ICASS.2018.8651950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault supervision in stand-alone photovoltaic system is one of the most important task to increase the reliability, efficiencies and safety. This paper proposes a fault detection and identification of a stand-alone photovoltaic system based on feed forward Artificial Neural Network (ANN). The input network consist simply of current and voltage for PV, Battery and load. Two consequent ANN are developed respectively, for detection and diagnosis using a real data issued from experimental stand-alone photovoltaic system installed at LREA in the University of Médéa, Algeria. The results show a high rate of good classification for both detection and diagnosis network, which reveals the effectiveness of the proposed method.\",\"PeriodicalId\":358814,\"journal\":{\"name\":\"2018 International Conference on Applied Smart Systems (ICASS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Applied Smart Systems (ICASS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASS.2018.8651950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Applied Smart Systems (ICASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASS.2018.8651950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

单机光伏系统的故障监测是提高系统可靠性、效率和安全性的重要任务之一。提出了一种基于前馈人工神经网络(ANN)的独立光伏系统故障检测与识别方法。输入网络仅由PV、蓄电池和负载的电流和电压组成。随后分别开发了两种人工神经网络,用于检测和诊断,使用安装在阿尔及利亚马姆萨达姆大学LREA的实验性独立光伏系统发布的真实数据。结果表明,该方法对检测和诊断网络均有较高的分类率,表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent fault supervisory system applied on stand-alone photovoltaic system
Fault supervision in stand-alone photovoltaic system is one of the most important task to increase the reliability, efficiencies and safety. This paper proposes a fault detection and identification of a stand-alone photovoltaic system based on feed forward Artificial Neural Network (ANN). The input network consist simply of current and voltage for PV, Battery and load. Two consequent ANN are developed respectively, for detection and diagnosis using a real data issued from experimental stand-alone photovoltaic system installed at LREA in the University of Médéa, Algeria. The results show a high rate of good classification for both detection and diagnosis network, which reveals the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Neural Network Modeling of Sustained Antihypertensive Drug Delivery using Polyelectrolyte Complex based on Carboxymethyl-kappa-carrageenan and Chitosan as Prospective Carriers Scaled artificial bee colony programming Semi-Supervised Learning for Medical Application: A Survey Simulation of 2D Optical Code Division Multiple Access System with Different Receiver Structures using Multi-Wavelength Optical Orthogonal Codes EPBT and CO2 emission from solar PV monocrystaline silicon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1