发射断层扫描贝叶斯重建中的弱板力学模型

Soojin Lee, Anand Rangarajan, G. Gindi
{"title":"发射断层扫描贝叶斯重建中的弱板力学模型","authors":"Soojin Lee, Anand Rangarajan, G. Gindi","doi":"10.1109/NSSMIC.1993.373547","DOIUrl":null,"url":null,"abstract":"Bayesian reconstruction methods for emission tomography allow the introduction of prior information in the form of spatial smoothness constraints on the underlying object. The authors extend these priors to model the type of smoothness that favors piecewise linear regions. Empirical evidence that this extension is useful is found in animal autoradiographs that show regions of radionuclide density whose structure is far from piecewise flat. The extension uses a \"weak plate\" prior (A. Blake and A. Zisserman, 1987) that allows for piecewise-ramplike regions in the reconstruction. Here, discontinuities include creases-discontinuities in the object gradient rather than in the object itself. To incorporate their new prior in a MAP approach, the authors model the prior as a Gibbs distribution and use a GEM formulation for the optimization. They use mathematical phantoms and a phantom derived from an autoradiograph to illustrate the efficacy of the weak plate prior as compared to more conventional priors.<<ETX>>","PeriodicalId":287813,"journal":{"name":"1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Weak plate mechanical models in Bayesian reconstruction for emission tomography\",\"authors\":\"Soojin Lee, Anand Rangarajan, G. Gindi\",\"doi\":\"10.1109/NSSMIC.1993.373547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian reconstruction methods for emission tomography allow the introduction of prior information in the form of spatial smoothness constraints on the underlying object. The authors extend these priors to model the type of smoothness that favors piecewise linear regions. Empirical evidence that this extension is useful is found in animal autoradiographs that show regions of radionuclide density whose structure is far from piecewise flat. The extension uses a \\\"weak plate\\\" prior (A. Blake and A. Zisserman, 1987) that allows for piecewise-ramplike regions in the reconstruction. Here, discontinuities include creases-discontinuities in the object gradient rather than in the object itself. To incorporate their new prior in a MAP approach, the authors model the prior as a Gibbs distribution and use a GEM formulation for the optimization. They use mathematical phantoms and a phantom derived from an autoradiograph to illustrate the efficacy of the weak plate prior as compared to more conventional priors.<<ETX>>\",\"PeriodicalId\":287813,\"journal\":{\"name\":\"1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.1993.373547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.1993.373547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

发射断层扫描的贝叶斯重建方法允许以空间平滑约束的形式引入先验信息。作者将这些先验扩展到对分段线性区域的平滑类型进行建模。经验证据表明,这种扩展是有用的,在动物放射自显影,显示区域的放射性核素密度,其结构远不是分段平坦。扩展使用了一个“弱板块”先验(a . Blake和a . Zisserman, 1987),允许在重建中出现分段斜坡状区域。这里,不连续包括折痕——对象梯度的不连续,而不是对象本身的不连续。为了将他们的新先验纳入MAP方法,作者将先验建模为吉布斯分布,并使用GEM公式进行优化。他们使用数学模型和来自放射自显影机的模型来说明弱板先验与传统先验相比的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weak plate mechanical models in Bayesian reconstruction for emission tomography
Bayesian reconstruction methods for emission tomography allow the introduction of prior information in the form of spatial smoothness constraints on the underlying object. The authors extend these priors to model the type of smoothness that favors piecewise linear regions. Empirical evidence that this extension is useful is found in animal autoradiographs that show regions of radionuclide density whose structure is far from piecewise flat. The extension uses a "weak plate" prior (A. Blake and A. Zisserman, 1987) that allows for piecewise-ramplike regions in the reconstruction. Here, discontinuities include creases-discontinuities in the object gradient rather than in the object itself. To incorporate their new prior in a MAP approach, the authors model the prior as a Gibbs distribution and use a GEM formulation for the optimization. They use mathematical phantoms and a phantom derived from an autoradiograph to illustrate the efficacy of the weak plate prior as compared to more conventional priors.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation Of Wavelength Shifters For Spectral Separation Of Barium Fluoride Emissions High-speed Reconstruction Of SPECT Mages With A Tailored Piecewise Neural Network A 12-channel VMEBUS-based Pulse-height Analysis Module A Bipolar Analog Front-end Integrated Circuit For The SDC Silicon Tracker Detection geometry and reconstruction error in magnetic source imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1