一种智能距离门拉断(RGPO)干扰方法

Ruitao Jia, Tianxian Zhang, Yuanhang Wang, Yanhong Deng, L. Kong
{"title":"一种智能距离门拉断(RGPO)干扰方法","authors":"Ruitao Jia, Tianxian Zhang, Yuanhang Wang, Yanhong Deng, L. Kong","doi":"10.1109/UCET51115.2020.9205386","DOIUrl":null,"url":null,"abstract":"In this paper, considering a range gate pull-off (RGPO) jamming for self-defense jamming, an optimal multiframe RGPO jamming strategy is investigated with unknown environment model. The optimal RGPO jamming strategy problem is solved by proposing a multi-frame RGPO jamming strategy optimization method based on black-box optimization technique. Firstly, we construct a multi-frame optimization model of RGPO jamming strategy by choosing the success rate of pull-off as the objective function. Then, to improve the jamming performance, a particle swarm optimization(PSO) algorithm based on Monte Carlo prediction fitness function(MC-PSO) is proposed. Finally, numerical simulation results are provided to verify the validity of the proposed method.","PeriodicalId":163493,"journal":{"name":"2020 International Conference on UK-China Emerging Technologies (UCET)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Intelligent Range Gate Pull-off (RGPO) Jamming Method\",\"authors\":\"Ruitao Jia, Tianxian Zhang, Yuanhang Wang, Yanhong Deng, L. Kong\",\"doi\":\"10.1109/UCET51115.2020.9205386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, considering a range gate pull-off (RGPO) jamming for self-defense jamming, an optimal multiframe RGPO jamming strategy is investigated with unknown environment model. The optimal RGPO jamming strategy problem is solved by proposing a multi-frame RGPO jamming strategy optimization method based on black-box optimization technique. Firstly, we construct a multi-frame optimization model of RGPO jamming strategy by choosing the success rate of pull-off as the objective function. Then, to improve the jamming performance, a particle swarm optimization(PSO) algorithm based on Monte Carlo prediction fitness function(MC-PSO) is proposed. Finally, numerical simulation results are provided to verify the validity of the proposed method.\",\"PeriodicalId\":163493,\"journal\":{\"name\":\"2020 International Conference on UK-China Emerging Technologies (UCET)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on UK-China Emerging Technologies (UCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UCET51115.2020.9205386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on UK-China Emerging Technologies (UCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCET51115.2020.9205386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对自防御干扰中的距离门拉断(RGPO)干扰,在未知环境模型下研究了一种最优多帧RGPO干扰策略。提出了一种基于黑盒优化技术的多帧RGPO干扰策略优化方法,解决了RGPO干扰策略优化问题。首先,以拉离成功率为目标函数,构建了RGPO干扰策略的多帧优化模型;然后,为了改善干扰性能,提出了一种基于蒙特卡罗预测适应度函数的粒子群优化算法(MC-PSO)。最后给出了数值仿真结果,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Intelligent Range Gate Pull-off (RGPO) Jamming Method
In this paper, considering a range gate pull-off (RGPO) jamming for self-defense jamming, an optimal multiframe RGPO jamming strategy is investigated with unknown environment model. The optimal RGPO jamming strategy problem is solved by proposing a multi-frame RGPO jamming strategy optimization method based on black-box optimization technique. Firstly, we construct a multi-frame optimization model of RGPO jamming strategy by choosing the success rate of pull-off as the objective function. Then, to improve the jamming performance, a particle swarm optimization(PSO) algorithm based on Monte Carlo prediction fitness function(MC-PSO) is proposed. Finally, numerical simulation results are provided to verify the validity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Wristband for Gesture Recognition Foldable, Eco-Friendly and Low-Cost Microfluidic Paper-Based Capacitive Droplet Sensor A Wearable Health Monitoring System A Novel Approach for Classifying Diabetes’ Patients Based on Imputation and Machine Learning Towards Holographic Beam-Forming Metasurface Technology for Next Generation CubeSats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1