水溶性壳聚糖衍生物n -亚甲基膦壳聚糖是一种有效的抗植物致病菌镰刀菌剂

F. A. Mesas, M. Terrile, M. Silveyra, A. Zuñiga, M. S. Rodríguez, C. Casalongué, J. Mendieta
{"title":"水溶性壳聚糖衍生物n -亚甲基膦壳聚糖是一种有效的抗植物致病菌镰刀菌剂","authors":"F. A. Mesas, M. Terrile, M. Silveyra, A. Zuñiga, M. S. Rodríguez, C. Casalongué, J. Mendieta","doi":"10.1101/2021.06.16.448680","DOIUrl":null,"url":null,"abstract":"Chitosan has been considered an environmental-friendly polymer. However, its use in agriculture has not been extended yet due to its relatively low solubility in water. In an attempt to improve such chemical characteristics, a chitosan-derivative prepared by adding a phosphonic group to chitosan N-methylene phosphonic chitosan, NMPC, was obtained from shrimp fishing industry waste from Argentinean Patagonia. This study showed that NMPC had a fungicidal effect on the phytopathogenic fungus Fusarium solani f. sp. eumartii (F. eumartii). NMPC inhibited F. eumartti mycelial growth and spore germination with low IC50 values. In vivo studies showed that NMPC affected fungal membrane permeability, ROS production, and cell death. NMPC also exerted antifungal effects against two other phytopathogens, Botrytis cinerea, and Phytophthora infestans. NMPC did not affect tomato cell viability at the same doses applied to these phytopathogens. Furthermore, the selective cytotoxicity of NMPC could give it added value in its application as an antimicrobial agent in agriculture.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Water-Soluble Chitosan Derivative, N-Methylene Phosphonic Chitosan, Is an Effective Fungicide against the Phytopathogen Fusarium eumartii\",\"authors\":\"F. A. Mesas, M. Terrile, M. Silveyra, A. Zuñiga, M. S. Rodríguez, C. Casalongué, J. Mendieta\",\"doi\":\"10.1101/2021.06.16.448680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chitosan has been considered an environmental-friendly polymer. However, its use in agriculture has not been extended yet due to its relatively low solubility in water. In an attempt to improve such chemical characteristics, a chitosan-derivative prepared by adding a phosphonic group to chitosan N-methylene phosphonic chitosan, NMPC, was obtained from shrimp fishing industry waste from Argentinean Patagonia. This study showed that NMPC had a fungicidal effect on the phytopathogenic fungus Fusarium solani f. sp. eumartii (F. eumartii). NMPC inhibited F. eumartti mycelial growth and spore germination with low IC50 values. In vivo studies showed that NMPC affected fungal membrane permeability, ROS production, and cell death. NMPC also exerted antifungal effects against two other phytopathogens, Botrytis cinerea, and Phytophthora infestans. NMPC did not affect tomato cell viability at the same doses applied to these phytopathogens. Furthermore, the selective cytotoxicity of NMPC could give it added value in its application as an antimicrobial agent in agriculture.\",\"PeriodicalId\":101515,\"journal\":{\"name\":\"The Plant Pathology Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Pathology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2021.06.16.448680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Pathology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.06.16.448680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

壳聚糖一直被认为是一种环保聚合物。然而,由于其在水中的溶解度相对较低,其在农业中的应用尚未得到推广。为了改善壳聚糖的化学特性,以阿根廷巴塔哥尼亚捕虾工业废料为原料,在壳聚糖上加入磷酸基制备了n-亚甲基磷酸壳聚糖衍生物NMPC。本研究表明,NMPC对植物致病性真菌番茄枯萎病(Fusarium solani f. sp. umartii)有一定的杀真菌作用。NMPC抑制真菌菌丝生长和孢子萌发,IC50值较低。体内研究表明,NMPC影响真菌膜通透性、ROS产生和细胞死亡。NMPC对另外两种植物病原体,葡萄孢菌和疫霉也有抗真菌作用。NMPC在相同剂量下对番茄细胞活力没有影响。此外,NMPC的选择性细胞毒性可以为其作为农业抗菌剂的应用提供附加价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Water-Soluble Chitosan Derivative, N-Methylene Phosphonic Chitosan, Is an Effective Fungicide against the Phytopathogen Fusarium eumartii
Chitosan has been considered an environmental-friendly polymer. However, its use in agriculture has not been extended yet due to its relatively low solubility in water. In an attempt to improve such chemical characteristics, a chitosan-derivative prepared by adding a phosphonic group to chitosan N-methylene phosphonic chitosan, NMPC, was obtained from shrimp fishing industry waste from Argentinean Patagonia. This study showed that NMPC had a fungicidal effect on the phytopathogenic fungus Fusarium solani f. sp. eumartii (F. eumartii). NMPC inhibited F. eumartti mycelial growth and spore germination with low IC50 values. In vivo studies showed that NMPC affected fungal membrane permeability, ROS production, and cell death. NMPC also exerted antifungal effects against two other phytopathogens, Botrytis cinerea, and Phytophthora infestans. NMPC did not affect tomato cell viability at the same doses applied to these phytopathogens. Furthermore, the selective cytotoxicity of NMPC could give it added value in its application as an antimicrobial agent in agriculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Plant-Associated Flavobacterium: A Hidden Helper for Improving Plant Health Antioxidant Systems of Plant Pathogenic Fungi: Functions in Oxidative Stress Response and Their Regulatory Mechanisms Synthesis of Nano Sulfur/Chitosan-Copper Complex and Its Nematicidal Effect against Meloidogyne incognita In Vitro and on Coffee Pots Twindemic Threats of Weeds Coinfected with Tomato Yellow Leaf Curl Virus and Tomato Spotted Wilt Virus as Viral Reservoirs in Tomato Greenhouses Antifungal Properties of Streptomyces bacillaris S8 for Biological Control Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1