过滤方法在微阵列数据的基因选择中是否非常有效?

Zhou-Jun Li, Lijuan Zhang, Huo-Wang Chen
{"title":"过滤方法在微阵列数据的基因选择中是否非常有效?","authors":"Zhou-Jun Li, Lijuan Zhang, Huo-Wang Chen","doi":"10.1109/BIBMW.2007.4425406","DOIUrl":null,"url":null,"abstract":"Feature (gene) selection is a frequently used preprocessing technology for successful cancer classification task in microarray gene expression data analysis. Widely used gene selection approaches are mainly focused on the filter methods. Filter methods are usually considered to be very effective and efficient for high-dimensional data. This paper reviews the existing filter methods, and shows the performance of the representative algorithms on microarray data by extensive experimental study. Surprisingly, the experimental results show that filter methods are not very effective on microarray data. We analyze the cause of the result and provide the basic ideas for potential solutions.","PeriodicalId":260286,"journal":{"name":"2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Are filter methods very effective in gene selection of microarray data?\",\"authors\":\"Zhou-Jun Li, Lijuan Zhang, Huo-Wang Chen\",\"doi\":\"10.1109/BIBMW.2007.4425406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature (gene) selection is a frequently used preprocessing technology for successful cancer classification task in microarray gene expression data analysis. Widely used gene selection approaches are mainly focused on the filter methods. Filter methods are usually considered to be very effective and efficient for high-dimensional data. This paper reviews the existing filter methods, and shows the performance of the representative algorithms on microarray data by extensive experimental study. Surprisingly, the experimental results show that filter methods are not very effective on microarray data. We analyze the cause of the result and provide the basic ideas for potential solutions.\",\"PeriodicalId\":260286,\"journal\":{\"name\":\"2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2007.4425406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2007.4425406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

特征(基因)选择是微阵列基因表达数据分析中常用的一种成功的癌症分类预处理技术。目前广泛应用的基因选择方法主要集中在筛选方法上。过滤器方法通常被认为对高维数据非常有效和高效。本文综述了现有的滤波方法,并通过大量的实验研究,展示了代表性算法在微阵列数据上的性能。令人惊讶的是,实验结果表明,滤波方法对微阵列数据不是很有效。我们分析了造成这一结果的原因,并为潜在的解决方案提供了基本思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Are filter methods very effective in gene selection of microarray data?
Feature (gene) selection is a frequently used preprocessing technology for successful cancer classification task in microarray gene expression data analysis. Widely used gene selection approaches are mainly focused on the filter methods. Filter methods are usually considered to be very effective and efficient for high-dimensional data. This paper reviews the existing filter methods, and shows the performance of the representative algorithms on microarray data by extensive experimental study. Surprisingly, the experimental results show that filter methods are not very effective on microarray data. We analyze the cause of the result and provide the basic ideas for potential solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
V-Lab-Protein: Virtual Collaborative Lab for protein sequence analysis Using fuzzy memberships to core patterns to interpret connectedness in gene expression clusters Rapid computation of large numbers of LOD scores in linkage analysis through polynomial expression of genetic likelihoods Flagellar proteins prediction after sequence-structure alignments of coronin and Arp2/3 complex in Leishmania spp. Structural characterization of RNA-binding sites of proteins: Preliminary results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1