{"title":"SIMARD:一种具有质量预选策略的基于模拟退火的RNA设计算法","authors":"Sinem Sav, David J. D. Hampson, Herbert H. Tsang","doi":"10.1109/SSCI.2016.7849957","DOIUrl":null,"url":null,"abstract":"Most of the biological processes including expression levels of genes and translation of DNA to produce proteins within cells depend on RNA sequences, and the structure of the RNA plays vital role for its function. RNA design problem refers to the design of an RNA sequence that folds into given secondary structure. However, vast number of possible nucleotide combinations make this an NP-Hard problem. To solve the RNA design problem, a number of researchers have tried to implement algorithms using local stochastic search, context-free grammars, global sampling or evolutionary programming approaches. In this paper, we examine SIMARD, an RNA design algorithm that implements simulated annealing techniques. We also propose QPS, a mutation operator for SIMARD that pre-selects high quality sequences. Furthermore, we present experiment results of SIMARD compared to eight other RNA design algorithms using the Rfam datset. The experiment results indicate that SIMARD shows promising results in terms of Hamming distance between designed sequence and the target structure, and outperforms ERD in terms of free energy.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"SIMARD: A simulated annealing based RNA design algorithm with quality pre-selection strategies\",\"authors\":\"Sinem Sav, David J. D. Hampson, Herbert H. Tsang\",\"doi\":\"10.1109/SSCI.2016.7849957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the biological processes including expression levels of genes and translation of DNA to produce proteins within cells depend on RNA sequences, and the structure of the RNA plays vital role for its function. RNA design problem refers to the design of an RNA sequence that folds into given secondary structure. However, vast number of possible nucleotide combinations make this an NP-Hard problem. To solve the RNA design problem, a number of researchers have tried to implement algorithms using local stochastic search, context-free grammars, global sampling or evolutionary programming approaches. In this paper, we examine SIMARD, an RNA design algorithm that implements simulated annealing techniques. We also propose QPS, a mutation operator for SIMARD that pre-selects high quality sequences. Furthermore, we present experiment results of SIMARD compared to eight other RNA design algorithms using the Rfam datset. The experiment results indicate that SIMARD shows promising results in terms of Hamming distance between designed sequence and the target structure, and outperforms ERD in terms of free energy.\",\"PeriodicalId\":120288,\"journal\":{\"name\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2016.7849957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7849957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SIMARD: A simulated annealing based RNA design algorithm with quality pre-selection strategies
Most of the biological processes including expression levels of genes and translation of DNA to produce proteins within cells depend on RNA sequences, and the structure of the RNA plays vital role for its function. RNA design problem refers to the design of an RNA sequence that folds into given secondary structure. However, vast number of possible nucleotide combinations make this an NP-Hard problem. To solve the RNA design problem, a number of researchers have tried to implement algorithms using local stochastic search, context-free grammars, global sampling or evolutionary programming approaches. In this paper, we examine SIMARD, an RNA design algorithm that implements simulated annealing techniques. We also propose QPS, a mutation operator for SIMARD that pre-selects high quality sequences. Furthermore, we present experiment results of SIMARD compared to eight other RNA design algorithms using the Rfam datset. The experiment results indicate that SIMARD shows promising results in terms of Hamming distance between designed sequence and the target structure, and outperforms ERD in terms of free energy.