空间通信用擦除码:最新发现和新挑战

G. Garrammone, Tomaso de Cola, B. Matuz, G. Liva
{"title":"空间通信用擦除码:最新发现和新挑战","authors":"G. Garrammone, Tomaso de Cola, B. Matuz, G. Liva","doi":"10.1109/ASMS-SPSC.2012.6333092","DOIUrl":null,"url":null,"abstract":"The use of erasure codes in space communications has proved to be promising in order to make communication more robust against both independent and correlated data losses. In particular, erasure codes are an appealing solution to provide space communications with increased reliability, especially in scenarios where large latencies make the use of automatic repeat request (ARQ) strategies problematic. In this regard, preliminary studies on the use of binary low-density parity-check (LDPC) codes under maximum likelihood (ML)/iterative (IT) decoding have been carried out showing the performance benefit they can bring over traditional schemes based on retransmissions. This paper extends the analysis conducted in previous studies towards non-binary LDPC codes. Performance assessment is carried out with respect to reliability metrics (codeword error rate) and encoding/decoding complexity, taking into consideration the limitations of space communications in terms of storage and processing capabilities. Finally, the paper sketches some design guidelines on the integration of the proposed codes into the Consultative Committee for Space Data Systems (CCSDS) protocol stack, implemented as extension of the Licklider Transmission Protocol (LTP).","PeriodicalId":303959,"journal":{"name":"2012 6th Advanced Satellite Multimedia Systems Conference (ASMS) and 12th Signal Processing for Space Communications Workshop (SPSC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Erasure codes for space communications: Recent findings and new challenges\",\"authors\":\"G. Garrammone, Tomaso de Cola, B. Matuz, G. Liva\",\"doi\":\"10.1109/ASMS-SPSC.2012.6333092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of erasure codes in space communications has proved to be promising in order to make communication more robust against both independent and correlated data losses. In particular, erasure codes are an appealing solution to provide space communications with increased reliability, especially in scenarios where large latencies make the use of automatic repeat request (ARQ) strategies problematic. In this regard, preliminary studies on the use of binary low-density parity-check (LDPC) codes under maximum likelihood (ML)/iterative (IT) decoding have been carried out showing the performance benefit they can bring over traditional schemes based on retransmissions. This paper extends the analysis conducted in previous studies towards non-binary LDPC codes. Performance assessment is carried out with respect to reliability metrics (codeword error rate) and encoding/decoding complexity, taking into consideration the limitations of space communications in terms of storage and processing capabilities. Finally, the paper sketches some design guidelines on the integration of the proposed codes into the Consultative Committee for Space Data Systems (CCSDS) protocol stack, implemented as extension of the Licklider Transmission Protocol (LTP).\",\"PeriodicalId\":303959,\"journal\":{\"name\":\"2012 6th Advanced Satellite Multimedia Systems Conference (ASMS) and 12th Signal Processing for Space Communications Workshop (SPSC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 6th Advanced Satellite Multimedia Systems Conference (ASMS) and 12th Signal Processing for Space Communications Workshop (SPSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMS-SPSC.2012.6333092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 6th Advanced Satellite Multimedia Systems Conference (ASMS) and 12th Signal Processing for Space Communications Workshop (SPSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMS-SPSC.2012.6333092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在空间通信中使用擦除码已被证明是很有希望的,以便使通信更加坚固,能够抵御独立和相关的数据丢失。特别是,擦除码是一种具有吸引力的解决方案,可为空间通信提供更高的可靠性,特别是在大延迟导致使用自动重复请求(ARQ)策略存在问题的情况下。在这方面,在最大似然(ML)/迭代(IT)解码下使用二进制低密度奇偶校验(LDPC)码的初步研究已经进行,表明它们可以带来优于基于重传的传统方案的性能优势。本文扩展了前人对非二进制LDPC码的分析。考虑到空间通信在存储和处理能力方面的局限性,对可靠性指标(码字错误率)和编码/解码复杂性进行了性能评估。最后,本文概述了将拟议代码整合到空间数据系统咨询委员会(CCSDS)协议栈中的一些设计指南,作为Licklider传输协议(LTP)的扩展实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Erasure codes for space communications: Recent findings and new challenges
The use of erasure codes in space communications has proved to be promising in order to make communication more robust against both independent and correlated data losses. In particular, erasure codes are an appealing solution to provide space communications with increased reliability, especially in scenarios where large latencies make the use of automatic repeat request (ARQ) strategies problematic. In this regard, preliminary studies on the use of binary low-density parity-check (LDPC) codes under maximum likelihood (ML)/iterative (IT) decoding have been carried out showing the performance benefit they can bring over traditional schemes based on retransmissions. This paper extends the analysis conducted in previous studies towards non-binary LDPC codes. Performance assessment is carried out with respect to reliability metrics (codeword error rate) and encoding/decoding complexity, taking into consideration the limitations of space communications in terms of storage and processing capabilities. Finally, the paper sketches some design guidelines on the integration of the proposed codes into the Consultative Committee for Space Data Systems (CCSDS) protocol stack, implemented as extension of the Licklider Transmission Protocol (LTP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CRDSA, CRDSA++ and IRSA: Stability and performance evaluation Estimation of carrier and channel parameters for land-mobile satellite channels Satellite cognitive communications: Interference modeling and techniques selection Next generation interactive s-band mobile systems Challenges and solutions Coded SC-FDMA for broadband satellite return links
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1