基于遗传算法的水下单幅图像去雾暗通道先验参数选择

Vincent Jan D. Almero, Ronnie S. Concepcion, Jonnel D. Alejandrino, A. Bandala, Jason L. Española, R. Bedruz, R. R. Vicerra, E. Dadios
{"title":"基于遗传算法的水下单幅图像去雾暗通道先验参数选择","authors":"Vincent Jan D. Almero, Ronnie S. Concepcion, Jonnel D. Alejandrino, A. Bandala, Jason L. Española, R. Bedruz, R. R. Vicerra, E. Dadios","doi":"10.1109/TENCON50793.2020.9293849","DOIUrl":null,"url":null,"abstract":"Dehazing through Dark Channel Prior (DCP), originally developed for land-based images, has translated its potential for improving the quality of underwater images. However, the DCP default parameters, which are just adapted from land-based applications, may not be applicable for underwater images. Such constraint limits the capability of this restoration algorithm to improve the quality of an underwater image; the values of these parameters must be searched for each underwater image. A proposed approach on the parameter values assignment problem is to conduct an optimized search based on Genetic Algorithm. The presentation of this proposed approach focuses on the Genetic Algorithm processes: chromosome encoding, fitness function development, and selection, mutation, and crossover, to perform an effective search of the best solution out of a pool of possible solutions. Qualitative and quantitative evaluations show that utilization of optimized combination of DCP parameters, achieves images of higher quality in comparison to the utilization of established default DCP parameters.","PeriodicalId":283131,"journal":{"name":"2020 IEEE REGION 10 CONFERENCE (TENCON)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Genetic Algorithm-based Dark Channel Prior Parameters Selection for Single Underwater Image Dehazing\",\"authors\":\"Vincent Jan D. Almero, Ronnie S. Concepcion, Jonnel D. Alejandrino, A. Bandala, Jason L. Española, R. Bedruz, R. R. Vicerra, E. Dadios\",\"doi\":\"10.1109/TENCON50793.2020.9293849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dehazing through Dark Channel Prior (DCP), originally developed for land-based images, has translated its potential for improving the quality of underwater images. However, the DCP default parameters, which are just adapted from land-based applications, may not be applicable for underwater images. Such constraint limits the capability of this restoration algorithm to improve the quality of an underwater image; the values of these parameters must be searched for each underwater image. A proposed approach on the parameter values assignment problem is to conduct an optimized search based on Genetic Algorithm. The presentation of this proposed approach focuses on the Genetic Algorithm processes: chromosome encoding, fitness function development, and selection, mutation, and crossover, to perform an effective search of the best solution out of a pool of possible solutions. Qualitative and quantitative evaluations show that utilization of optimized combination of DCP parameters, achieves images of higher quality in comparison to the utilization of established default DCP parameters.\",\"PeriodicalId\":283131,\"journal\":{\"name\":\"2020 IEEE REGION 10 CONFERENCE (TENCON)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE REGION 10 CONFERENCE (TENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON50793.2020.9293849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE REGION 10 CONFERENCE (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON50793.2020.9293849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

通过暗通道先验(DCP)去雾,最初是为陆地图像开发的,已经转化为提高水下图像质量的潜力。但是,DCP的默认参数只是从陆基应用中调整而来,可能不适用于水下图像。这种约束限制了该恢复算法提高水下图像质量的能力;每个水下图像都必须搜索这些参数的值。针对参数值分配问题,提出了一种基于遗传算法的优化搜索方法。提出的方法侧重于遗传算法过程:染色体编码、适应度函数开发、选择、突变和交叉,以执行从可能的解决方案池中有效搜索最佳解决方案。定性和定量评价表明,与使用已建立的默认DCP参数相比,利用优化后的DCP参数组合获得的图像质量更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic Algorithm-based Dark Channel Prior Parameters Selection for Single Underwater Image Dehazing
Dehazing through Dark Channel Prior (DCP), originally developed for land-based images, has translated its potential for improving the quality of underwater images. However, the DCP default parameters, which are just adapted from land-based applications, may not be applicable for underwater images. Such constraint limits the capability of this restoration algorithm to improve the quality of an underwater image; the values of these parameters must be searched for each underwater image. A proposed approach on the parameter values assignment problem is to conduct an optimized search based on Genetic Algorithm. The presentation of this proposed approach focuses on the Genetic Algorithm processes: chromosome encoding, fitness function development, and selection, mutation, and crossover, to perform an effective search of the best solution out of a pool of possible solutions. Qualitative and quantitative evaluations show that utilization of optimized combination of DCP parameters, achieves images of higher quality in comparison to the utilization of established default DCP parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Intrusive Diabetes Pre-diagnosis using Fingerprint Analysis with Multilayer Perceptron Smart Defect Detection and Sortation through Image Processing for Corn Short-term Unit Commitment Using Advanced Direct Load Control Leukemia Detection Mechanism through Microscopic Image and ML Techniques German Sign Language Translation using 3D Hand Pose Estimation and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1