基于人工神经网络的骨应力强度因子评估

A. Vukicevic, G. Jovicic, N. Jovicic, Z. Milosevic, N. Filipovic
{"title":"基于人工神经网络的骨应力强度因子评估","authors":"A. Vukicevic, G. Jovicic, N. Jovicic, Z. Milosevic, N. Filipovic","doi":"10.1109/BIBE.2015.7367680","DOIUrl":null,"url":null,"abstract":"Assessment of the risks associated with bone injures is nontrivial because fragility of human bones is varying with aging. Since only a limited number of experiments have been performed on the specimens from human donors, there is limited number of fracture resistance curves available in literature. This study proposes a decision support system for the assessment of bone stress intensity factor by using artificial neural networks (ANN). The procedure estimates stress intensity factor according to patient's age and diagnosed crack length. ANN was trained using the experimental data available in literature. The automated training of ANN was performed using evolutionary assembled Artificial Neural Networks. The obtained results showed good correlation with the experimental data, with potential for further improvements and applications.","PeriodicalId":422807,"journal":{"name":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assessment of bone stress intensity factor using artificial neural networks\",\"authors\":\"A. Vukicevic, G. Jovicic, N. Jovicic, Z. Milosevic, N. Filipovic\",\"doi\":\"10.1109/BIBE.2015.7367680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assessment of the risks associated with bone injures is nontrivial because fragility of human bones is varying with aging. Since only a limited number of experiments have been performed on the specimens from human donors, there is limited number of fracture resistance curves available in literature. This study proposes a decision support system for the assessment of bone stress intensity factor by using artificial neural networks (ANN). The procedure estimates stress intensity factor according to patient's age and diagnosed crack length. ANN was trained using the experimental data available in literature. The automated training of ANN was performed using evolutionary assembled Artificial Neural Networks. The obtained results showed good correlation with the experimental data, with potential for further improvements and applications.\",\"PeriodicalId\":422807,\"journal\":{\"name\":\"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2015.7367680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2015.7367680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

评估与骨损伤相关的风险是非常重要的,因为人类骨骼的脆弱性随着年龄的增长而变化。由于对人类供体标本进行的实验数量有限,因此文献中可获得的断裂阻力曲线数量有限。本研究提出一种基于人工神经网络(ANN)的骨应力强度因子评估决策支持系统。该程序根据患者的年龄和诊断的裂纹长度估计应力强度因子。利用文献中的实验数据对人工神经网络进行训练。采用进化装配人工神经网络对人工神经网络进行自动训练。所得结果与实验数据具有较好的相关性,具有进一步改进和应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of bone stress intensity factor using artificial neural networks
Assessment of the risks associated with bone injures is nontrivial because fragility of human bones is varying with aging. Since only a limited number of experiments have been performed on the specimens from human donors, there is limited number of fracture resistance curves available in literature. This study proposes a decision support system for the assessment of bone stress intensity factor by using artificial neural networks (ANN). The procedure estimates stress intensity factor according to patient's age and diagnosed crack length. ANN was trained using the experimental data available in literature. The automated training of ANN was performed using evolutionary assembled Artificial Neural Networks. The obtained results showed good correlation with the experimental data, with potential for further improvements and applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated SOSORT-recommended angles measurement in patients with adolescent idiopathic scoliosis Estimating changes in a cognitive performance using heart rate variability Some examples on the performance of density functional theory in the description of bioinorganic systems and processes Modeling the metabolism of escherichia coli under oxygen gradients with dynamically changing flux bounds An automated approach to conduct effective on-site presumptive drug tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1