秩序数据的感知不可靠性:计量经济学的起源和影响

H. I. Yoo
{"title":"秩序数据的感知不可靠性:计量经济学的起源和影响","authors":"H. I. Yoo","doi":"10.2139/ssrn.2172145","DOIUrl":null,"url":null,"abstract":"The problem of unstable coecients in the rank-ordered logit model has been traditionally interpreted as a sign that survey respondents fail to provide reliable ranking responses. This paper shows that the problem may embody the inherent sensitivity of the model to stochastic misspecification instead. Even a minor departure from the postulated random utility function can induce the problem, for instance when rank-ordered logit is estimated whereas the true additive disturbance is iid normal over alternatives. Related implications for substantive analyses and further modelling are explored. In general, a well-speci ed random coecient rank-ordered logit model can mitigate, though not eliminate, the problem and produce analytically useful results. The model can also be generalised to be more suitable for forecasting purposes, by accommodating that stochastic misspecification matters less for individuals with more deterministic preferences. An empirical analysis using an Australian nursing job preferences survey shows that the estimates behave in accordance with these implications.","PeriodicalId":165362,"journal":{"name":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Perceived Unreliability of Rank-Ordered Data: An Econometric Origin and Implications\",\"authors\":\"H. I. Yoo\",\"doi\":\"10.2139/ssrn.2172145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of unstable coecients in the rank-ordered logit model has been traditionally interpreted as a sign that survey respondents fail to provide reliable ranking responses. This paper shows that the problem may embody the inherent sensitivity of the model to stochastic misspecification instead. Even a minor departure from the postulated random utility function can induce the problem, for instance when rank-ordered logit is estimated whereas the true additive disturbance is iid normal over alternatives. Related implications for substantive analyses and further modelling are explored. In general, a well-speci ed random coecient rank-ordered logit model can mitigate, though not eliminate, the problem and produce analytically useful results. The model can also be generalised to be more suitable for forecasting purposes, by accommodating that stochastic misspecification matters less for individuals with more deterministic preferences. An empirical analysis using an Australian nursing job preferences survey shows that the estimates behave in accordance with these implications.\",\"PeriodicalId\":165362,\"journal\":{\"name\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2172145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2172145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

秩序logit模型中不稳定系数的问题传统上被解释为调查对象不能提供可靠的排序回答的标志。本文表明,该问题可能体现了模型对随机错规范的固有敏感性。即使是对假设的随机效用函数的微小偏离也会引起问题,例如,当估计秩有序logit时,而真正的加性干扰在替代方案上是非正态的。对实质性分析和进一步建模的相关影响进行了探讨。一般来说,一个规范良好的随机系数秩序logit模型可以减轻(尽管不能消除)这个问题,并产生解析上有用的结果。该模型也可以被推广为更适合于预测目的,通过适应随机错误规范对具有更多确定性偏好的个体的影响较小。一项使用澳大利亚护理工作偏好调查的实证分析表明,估计行为符合这些含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Perceived Unreliability of Rank-Ordered Data: An Econometric Origin and Implications
The problem of unstable coecients in the rank-ordered logit model has been traditionally interpreted as a sign that survey respondents fail to provide reliable ranking responses. This paper shows that the problem may embody the inherent sensitivity of the model to stochastic misspecification instead. Even a minor departure from the postulated random utility function can induce the problem, for instance when rank-ordered logit is estimated whereas the true additive disturbance is iid normal over alternatives. Related implications for substantive analyses and further modelling are explored. In general, a well-speci ed random coecient rank-ordered logit model can mitigate, though not eliminate, the problem and produce analytically useful results. The model can also be generalised to be more suitable for forecasting purposes, by accommodating that stochastic misspecification matters less for individuals with more deterministic preferences. An empirical analysis using an Australian nursing job preferences survey shows that the estimates behave in accordance with these implications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assortment Optimization and Pricing Under the Threshold-Based Choice Models Robust Techniques to Estimate Parameters of Linear Models Identification of Random Coefficient Latent Utility Models An Algorithm for Assortment Optimization Under Parametric Discrete Choice Models Equivalent Choice Functions and Stable Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1