低次多项式Zolotarev第一问题的显式代数解

H. Rack, Róbert Vajda
{"title":"低次多项式Zolotarev第一问题的显式代数解","authors":"H. Rack, Róbert Vajda","doi":"10.33993/jnaat482-1173","DOIUrl":null,"url":null,"abstract":"E.I. Zolotarev's classical so-called First Problem (ZFP), which was posed to him by P.L. Chebyshev, is to determine, for a given \\(n\\in{\\mathbb N}\\backslash\\{1\\}\\) and for a given \\(s\\in{\\mathbb R}\\backslash\\{0\\}\\), the monic polynomial solution \\(Z^{*}_{n,s}\\) to the following best approximation problem: Find\\[\\min_{a_k}\\max_{x\\in[-1,1]}|a_0+a_1 x+\\dots+a_{n-2}x^{n-2}+(-n s)x^{n-1}+x^n|,\\]where the \\(a_k, 0\\le k\\le n-2\\), vary in \\(\\mathbb R\\). It suffices to consider the cases \\(s>\\tan^2\\left(\\pi/(2n)\\right)\\). In 1868 Zolotarev provided a transcendental solution for all \\(n\\geq2\\) in terms of elliptic functions. An explicit algebraic solution  in power form to ZFP, as is suggested by the problem statement, is available only for \\(2\\le n\\le 5.^1\\) We have now obtained an explicit algebraic solution to ZFP for \\(6\\le n\\le 12\\) in terms of roots of dedicated polynomials. In this paper, we provide our findings for \\(6\\le n\\le 7\\) in two alternative fashions, accompanied by concrete examples. The cases \\(8\\le n\\le 12\\) we treat, due to their bulkiness, in a separate web repository. \\(^1\\) Added in proof: But see our recent one-parameter power form solution for \\(n=6\\) in  [38].","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Explicit algebraic solution of Zolotarev's First Problem for low-degree polynomials\",\"authors\":\"H. Rack, Róbert Vajda\",\"doi\":\"10.33993/jnaat482-1173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"E.I. Zolotarev's classical so-called First Problem (ZFP), which was posed to him by P.L. Chebyshev, is to determine, for a given \\\\(n\\\\in{\\\\mathbb N}\\\\backslash\\\\{1\\\\}\\\\) and for a given \\\\(s\\\\in{\\\\mathbb R}\\\\backslash\\\\{0\\\\}\\\\), the monic polynomial solution \\\\(Z^{*}_{n,s}\\\\) to the following best approximation problem: Find\\\\[\\\\min_{a_k}\\\\max_{x\\\\in[-1,1]}|a_0+a_1 x+\\\\dots+a_{n-2}x^{n-2}+(-n s)x^{n-1}+x^n|,\\\\]where the \\\\(a_k, 0\\\\le k\\\\le n-2\\\\), vary in \\\\(\\\\mathbb R\\\\). It suffices to consider the cases \\\\(s>\\\\tan^2\\\\left(\\\\pi/(2n)\\\\right)\\\\). In 1868 Zolotarev provided a transcendental solution for all \\\\(n\\\\geq2\\\\) in terms of elliptic functions. An explicit algebraic solution  in power form to ZFP, as is suggested by the problem statement, is available only for \\\\(2\\\\le n\\\\le 5.^1\\\\) We have now obtained an explicit algebraic solution to ZFP for \\\\(6\\\\le n\\\\le 12\\\\) in terms of roots of dedicated polynomials. In this paper, we provide our findings for \\\\(6\\\\le n\\\\le 7\\\\) in two alternative fashions, accompanied by concrete examples. The cases \\\\(8\\\\le n\\\\le 12\\\\) we treat, due to their bulkiness, in a separate web repository. \\\\(^1\\\\) Added in proof: But see our recent one-parameter power form solution for \\\\(n=6\\\\) in  [38].\",\"PeriodicalId\":287022,\"journal\":{\"name\":\"Journal of Numerical Analysis and Approximation Theory\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Analysis and Approximation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33993/jnaat482-1173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat482-1173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

E.I. Zolotarev的经典所谓的第一问题(ZFP),是P.L. Chebyshev提出的,是为了确定,对于给定的\(n\in{\mathbb N}\backslash\{1\}\)和\(s\in{\mathbb R}\backslash\{0\}\),对于以下最佳逼近问题的单多项式解\(Z^{*}_{n,s}\):找到\[\min_{a_k}\max_{x\in[-1,1]}|a_0+a_1 x+\dots+a_{n-2}x^{n-2}+(-n s)x^{n-1}+x^n|,\],其中\(a_k, 0\le k\le n-2\)在\(\mathbb R\)中变化。考虑这些情况\(s>\tan^2\left(\pi/(2n)\right)\)就足够了。1868年,佐罗塔列夫用椭圆函数给出了所有\(n\geq2\)的超越解。ZFP的幂形式的显式代数解,正如问题陈述所建议的那样,只适用于\(2\le n\le 5.^1\)。我们现在已经获得了\(6\le n\le 12\)的专用多项式根的ZFP的显式代数解。在本文中,我们以两种不同的方式提供了\(6\le n\le 7\)的研究结果,并附有具体的例子。我们处理的案例\(8\le n\le 12\),由于其庞大,在一个单独的web存储库中。\(^1\)在证明中增加:但参见我们最近在[38]中对\(n=6\)的单参数幂形式解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Explicit algebraic solution of Zolotarev's First Problem for low-degree polynomials
E.I. Zolotarev's classical so-called First Problem (ZFP), which was posed to him by P.L. Chebyshev, is to determine, for a given \(n\in{\mathbb N}\backslash\{1\}\) and for a given \(s\in{\mathbb R}\backslash\{0\}\), the monic polynomial solution \(Z^{*}_{n,s}\) to the following best approximation problem: Find\[\min_{a_k}\max_{x\in[-1,1]}|a_0+a_1 x+\dots+a_{n-2}x^{n-2}+(-n s)x^{n-1}+x^n|,\]where the \(a_k, 0\le k\le n-2\), vary in \(\mathbb R\). It suffices to consider the cases \(s>\tan^2\left(\pi/(2n)\right)\). In 1868 Zolotarev provided a transcendental solution for all \(n\geq2\) in terms of elliptic functions. An explicit algebraic solution  in power form to ZFP, as is suggested by the problem statement, is available only for \(2\le n\le 5.^1\) We have now obtained an explicit algebraic solution to ZFP for \(6\le n\le 12\) in terms of roots of dedicated polynomials. In this paper, we provide our findings for \(6\le n\le 7\) in two alternative fashions, accompanied by concrete examples. The cases \(8\le n\le 12\) we treat, due to their bulkiness, in a separate web repository. \(^1\) Added in proof: But see our recent one-parameter power form solution for \(n=6\) in  [38].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptation of the composite finite element framework for semilinear parabolic problems A comparative study of Filon-type rules for oscillatory integrals Local convergence analysis of frozen Steffensen-type methods under generalized conditions Extension of primal-dual interior point method based on a kernel function for linear fractional problem Nonlinear random extrapolation estimates of \(\pi\) under Dirichlet distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1