{"title":"领域感知词嵌入的生成方法研究","authors":"Dominic Seyler, Chengxiang Zhai","doi":"10.1145/3397271.3401287","DOIUrl":null,"url":null,"abstract":"Word embeddings are essential components for many text data applications. In most work, \"out-of-the-box\" embeddings trained on general text corpora are used, but they can be less effective when applied to domain-specific settings. Thus, how to create \"domain-aware\" word embeddings is an interesting open research question. In this paper, we study three methods for creating domain-aware word embeddings based on both general and domain-specific text corpora, including concatenation of embedding vectors, weighted fusion of text data, and interpolation of aligned embedding vectors. Even though the investigated strategies are tailored for domain-specific tasks, they are general enough to be applied to any domain and are not specific to a single task. Experimental results show that all three methods can work well, however, the interpolation method consistently works best.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Study of Methods for the Generation of Domain-Aware Word Embeddings\",\"authors\":\"Dominic Seyler, Chengxiang Zhai\",\"doi\":\"10.1145/3397271.3401287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Word embeddings are essential components for many text data applications. In most work, \\\"out-of-the-box\\\" embeddings trained on general text corpora are used, but they can be less effective when applied to domain-specific settings. Thus, how to create \\\"domain-aware\\\" word embeddings is an interesting open research question. In this paper, we study three methods for creating domain-aware word embeddings based on both general and domain-specific text corpora, including concatenation of embedding vectors, weighted fusion of text data, and interpolation of aligned embedding vectors. Even though the investigated strategies are tailored for domain-specific tasks, they are general enough to be applied to any domain and are not specific to a single task. Experimental results show that all three methods can work well, however, the interpolation method consistently works best.\",\"PeriodicalId\":252050,\"journal\":{\"name\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397271.3401287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Study of Methods for the Generation of Domain-Aware Word Embeddings
Word embeddings are essential components for many text data applications. In most work, "out-of-the-box" embeddings trained on general text corpora are used, but they can be less effective when applied to domain-specific settings. Thus, how to create "domain-aware" word embeddings is an interesting open research question. In this paper, we study three methods for creating domain-aware word embeddings based on both general and domain-specific text corpora, including concatenation of embedding vectors, weighted fusion of text data, and interpolation of aligned embedding vectors. Even though the investigated strategies are tailored for domain-specific tasks, they are general enough to be applied to any domain and are not specific to a single task. Experimental results show that all three methods can work well, however, the interpolation method consistently works best.