{"title":"一个图形数字个人助理的基础和自主学习","authors":"C. Kennington, Aprajita Shukla","doi":"10.1145/3125739.3132592","DOIUrl":null,"url":null,"abstract":"We present a speech-driven digital personal assistant that is robust despite little or no training data and autonomously improves as it interacts with users. The system is able to establish and build common ground between itself and users by signaling understanding and by learning a mapping via interaction between the words that users actually speak and the system actions. We evaluated our system with real users and found an overall positive response. We further show through objective measures that autonomous learning improves performance in a simple itinerary filling task.","PeriodicalId":346669,"journal":{"name":"Proceedings of the 5th International Conference on Human Agent Interaction","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Graphical Digital Personal Assistant that Grounds and Learns Autonomously\",\"authors\":\"C. Kennington, Aprajita Shukla\",\"doi\":\"10.1145/3125739.3132592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a speech-driven digital personal assistant that is robust despite little or no training data and autonomously improves as it interacts with users. The system is able to establish and build common ground between itself and users by signaling understanding and by learning a mapping via interaction between the words that users actually speak and the system actions. We evaluated our system with real users and found an overall positive response. We further show through objective measures that autonomous learning improves performance in a simple itinerary filling task.\",\"PeriodicalId\":346669,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Human Agent Interaction\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Human Agent Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3125739.3132592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Human Agent Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3125739.3132592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Graphical Digital Personal Assistant that Grounds and Learns Autonomously
We present a speech-driven digital personal assistant that is robust despite little or no training data and autonomously improves as it interacts with users. The system is able to establish and build common ground between itself and users by signaling understanding and by learning a mapping via interaction between the words that users actually speak and the system actions. We evaluated our system with real users and found an overall positive response. We further show through objective measures that autonomous learning improves performance in a simple itinerary filling task.